
1

=._

i j" I/ j

Summary Report for the Engineering
Script Language (ESL)

m

SofTech, Inc.

i
November 28, 1990

Cooperative Agreement NCC 9-16

Research Activity No. SE.33

NASA Johnson Space Center

Information Systems Directorate
Information Technology Division

O ©

Research Institute for Computing and Information Systems
University of Houston - C/ear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R. T



The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnershipwith JSC tojointly define and manage an integratedprogramof research
in advanc_ data processing technology needed for JSC's main missions, including
administrative, engineeringand science responsibilities.JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lakebeginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
researchobjectivesto advanceknowledgeinthe computingand information
sciences.WorkingjointlywithNASA/JSC, RICIS adviseson researchneeds,
recommendsprincipalsforconductingthe research,providestechnicaland
administrativesupporttocoordinatetheresearch,and integratestechnicalresults
intothecooperativegoalsofUH-ClearLakeand NASA/JSC.



Summary Report for the Engineering

Script Language (ESL)

SofTech, Inc.

November 28, 1990

Cooperative Agreement NCC 9-16

Research Activity No. SE.33

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

I I I I

T.E.C.H.N.I.C.A.L R.E.P.O.R • T





Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by SofTech, Incorporated. Dr. Charles

McKay served as RICIS research coordinator.

Funding has been provided by Information Technology Division,

Information Systems Directorate, NASA/JSC through Cooperative Agreement

NCC 9-16 between NASA Johnson Space Center and the University of Houston-

Clear Lake. The NASA technical monitor for this activity was Ernest M. Fridge,

of the Software Technology Branch, Information Technology Division, Information

Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.





SUMMARY REPORT

FOR THE

ENGINEERING SCRIPT LANGUAGE (ESL)

28 November 1990

A UHCL/RICIS Report,
Contract No. NCC-9-16, SE.33

Copyright © 1990 by Sofl'ech, Inc.

This material is provided to the United States Government with
Unlimited Rights in accordance with DFARS 52.227.7013 (May 1981)

Alternate I, under which the Government may use, duplicate, or
disclose the data, in whole or in part, in any manner and for any purpose,

and may permit others to do so.

Prepared for:

Software Technology Branch,
Information Technology Division,
Information Systems Directorate,

Johnson Space Center

Prepared by:

SofTech, Inc.
1300 Hercules Drive, Suite 105

Houston, TX 77058-2747
(713) 480-1994





1.0 Introduction ................................................................................... 1

2.0 ESL Methodology Concepts ................................................................ 3
2.1 Graphs ................................................................................ 3
2.2 Data Flow Principles ................................................................ 6
2.3 Application Generation and Execution Using ESL .............................. 8

2.3.1 Graph Schema ................................................................ 9
2.3.1.1 ART ................................................................................................. 9

2.3.1.2 The Bauhaus System ............................................................................. 9
2.3.1.3 Bauhaus as ESL Library Manager .............................................................. 9

2.3.2 Graph Implementation and Execution ...................................... 10

3.0 ESL Specification ............................................................................ 12
3.1 ESL Components ..................................................................... 12

3.1.1 Nodes .......................................................................... 12
3.1.1.1 Ports ................................. .".............................................................. 12

3.1.1.2 Primitive Operation ............................................................................. 15

3.1.2 Queues ......................................................................... 16
3.2 Shell ................................................................................... 17

3.2.1 Node Scheduling and Execution ............................................ 17

3.2.2 Queue Management .......................................................... 18
3.2.3 Graph Management .......................................................... 18
3.2.4 Command Statements ........................................................ 19

3.2.5 Error Handling ................................................................ 22
4.0 User Interface Description ................................................................... 23

4.1 The ESL Editor ...................................................................... 23
4.2 Menu Commands .................................................................... 23

4.2.1 File ............................................................................. 24
4.2.1.1 New ............................................................................. ..................... 24

4.2.1.2 Open ................................................................................................ 24
4.2.1.3 Close ............................................................................................... 24

4.2.1.4 Attach .............................................................................................. 25

4.2.1.5 UnAttach ........................................................................................... 25
4.2.1.6 Save....] ............................................................................................ 25

4.2.1.7 Save As ............................................................................................. 25

4.2.1.8 Delete ............................................................................................... 25

4.2.1.9 Print ................................................................................................ 26

4.2.1.10 Quit ................................................................................................ 26
4.2.2 Edit ............................................................................. 26

4.2.2.1 Undo ................................................................................................ 26

4.2.2.2 Clear ................................................................................................ 26

4.2.2.3 Object Am'ibutes .................................................................................. 26

4.2.2.4 Queue Connections .............................................................................. 26
4.2.2.5 Initialize Queue ................................................................................... 26

4.2.2.6 Tunnel Queue Connection ...................................................................... 26

4.2.3 Create .......................................................................... 27
4.2.3.1 Node ................................................................................................ 27

4.2.3.2 Selector ............................................................................................ 27

4.2.3.3 Staircase Nodes ................................................................................... 27

4.2.3.4 Cream Parent ...................................................................................... 27

4.2.3.5 Decompose ........................................................................................ 28

4.2.3.6 Queue ............................................................................................... 28
4.2.3.7 Merge ............................................................................................... 28

4.2.3.8 Replicate ........................................................................................... 28

4.2.3.9 Trigger ............................................................................................. 28
4.2.3.10 Label .............................................................................................. 29

4.2.3.11 Attach Label ..................................................................................... 29

4.2.4 Level ........................................................................... 29
4.2.4.1 Graph/subgraph Structure ....................................................................... 29
4.2.4.2 Parent ............................................................................................... 29

4.2.4.3 Child ................................................................................................ 29

4.2.4.4 Queue Attribute Table ............................................................................ 29



4.2.4.5 Notes ............................................................................................... 29
4.2.4.6 Tool Panel ......................................................................................... 29

4.2.5 Translate ....................................................................... 30
4.2.5. ! Validate Current Graph ......................................................................... .3 0
4.2.5.2 ValidJte Entire Graph ............................................................................ 30
4.2.5.3 Generate HOL Code ............................................................................. .30

5.0 Engineering Scripting Language Command Statements Specification ................. 31
5.1 Command Statement Syntactic and Semantic Rules ............................. 31

5.1.1 Commands to create and modify nodes and NEPs ....................... 31
5.1.1.1 CREATE_GRAPH - lnstsmiate • Graph ..................................................... .31

5.1.1.2 CREATE_NODE - Instantiate • Node ........................................................ .32

5.1.1.3 LINK GRAPH_IJqPUT_PORT - Connects • Graph Input Port with • Node
Input Port .................................................................................................... .3 3

5.1.1.4 LINK_GRAPH_OUTPUT_PORT - Connects a Graph Output Port with a Node
Output Port .................................................................................................. _33
5.1.1.5 GET_READ_NEP - Determines the Value of the READ NEP ............................. .34
5.1.1.6 GET OFFSET_NEP - D_es the Value of the OFFSET NEP ....................... .35
5.1.1.7 GET CONSUME NEP - Detm, mines the Value of the CONSUME NEP ................ .35

5.1.1.8 GET THRESHOLD_NEP - Determines the Value of the THRESHOLD NEP ........... .36
5.1.1.9 GET PRODUCE_NEP - Determines the Value of the PRODUCE NEP .................. 36

5.1.1.10 NEW_READ NEP - Assign • New Value to the READ NEP ............................ .37
5.1.1.11 NEW OFFSET_NEP - Assign a New Value to the OFFSET NEP ...................... .37
5.1.1.12 NEW_CONSUME_NEP - Assign • New Value to the CONSUME NEP ............... .38
5.1.1.13 NEW_THRESHOLD_NEP - Assign • New Value to the THRESHOLD NEP ........... 39

5.1.1.14 NEW_PRODUCE NEP - Assign • New Value to the PRODUCE NEP .................. 40
5.1.1.15 SET_NEPS - Assigns New Values to All Node Execution Parameters ................. 40
5.1.1.16 GET_PRIORITY - Determines Priority Level of Node ................................... 41

5.1.1.17 NEW_PRIORITY - Assigns New Priority Level to Node ................................ 41

5.1.2 Commands to start and stop graph execution and query the status
of a node .............................................................. ................. 42

5.1.2.1 NODE_READY - Determines Ready State of Node ......................................... 42

5.1.2.2 START_NODE - Stare Ihe Execution of a Graph System ................................. 43

5.1.2.3 STOPNODE - Stops the Execution of a Graph System ................................... 43

5.1.3 Commands Co control the setting and consuming of triggers ............ 44
5.1.3.1 PRODUCE_TRIGGER - Produces Triggers onto an Attached Output Queue ............ 44
5.1.32 ENQUEUE_TRIGGER - Produces Triggers onto m Ur_tuu'.hed Queue .................. 45
5.1.3.3 CONSUME_TRIGGER - Consumes Triggers from an Attached Input Queue ........... 45

5.1.3.4 FLUSH_TRIGGER - Rernov_ Trigge=s from an Unmached Queue ..................... 46
5.1.3.5 INIT_TRIGGER_Q - Initializes an Unattached Queue with Tdggers .................... 46

5.1.4 Commands to create and move data to and from queues ................ 47
5.1.4.1 Q_SIZE - Determines Queue Size ............................................................. .47
5.1.4.2 CREATE Q - Create • Queue .................................................................... 47

5.1.4.3 CONNECT_INPUT_Q - Connect a Queue to • Node ........................................ 48
5.1.4.4 CONNECT OUTPUT_Q - Connect a Queue to • Node ...................................... 49

5.1.4.5 PRODUCE_DATA - Produces Data onto an Attached Output Queue ..................... 49

5.1.4.6 ENQUEUE_DATA - Produces Data onto an Unattached Queue ........................... .50
5.1.4.7 INIT_DATA Q - Initi•lize,s an Unattached Queue with Data. ............................ .51
5.1.4.8 READ DATA - Read Data from an Attached Input Queue ................................. .52

5.1.4.9 MOVE_DATA - Move Data from an Input Queue to an Output Queue .................. .53

5.1.4.10 CONSUME_DATA - Consumes Data from an Attached Input Queue .................. .53

5.1.4.11 DEQUEUE_DATA - Reads Data from an Unattached Queue ............................. _54
5.1.4.12 FLUSH_DATA- Removes Data from an Unattached Queue ............................. 55

5.2 ESL Command Specification ...................................................... 55
6.0 Recommendations for Further Research & Development ............................... 61

6.1 Domain Analyses .................................................................... 61
6.2 Environment and Capability Specification ........................................ 61
6.3 The Translator ....................................................................... 62

Appendix A - Scenarios ........................................................................... 63
A.1 Access the knowledge base from the ESL Editor ............................... 63
A.2 Editing Graphs ...................................................................... 63



A.2.1 Modifyinganexistingapplicationby loadingasubgraphor
primitive............................................................................... 63
A.2.2 Savingasubgraph........................................................... 63

A.2.2.1 Using the Save As command ................................................................... 64

A.2.2.2 Using the Save command ....................................................................... 64

A.2.3 Matching subgraphs/primitives ............................................. 64
A.3 Providing data values ............................................................... 64

A.3.1 Using primitives to get data ................................................. 64
A.3.1.1 Predefined file names hard coded into the primitive ....................................... 64
A.3.1.2 The file name is passed to the primitive ..................................................... 65

A.3.2 Using the Initialize Queue menu option ................................... 65
A.4 Reading a user input form using a primitive ..................................... 65





1.0 Introduction

In the past sophisticated simulation software has been used to support the generation of
mission profiles for Space Shuttle planning. The simulation software Space Vehicle
Dynamics Simulation (SVDS) and Flight Design System (FDS) made use of application
processors and custom executives to compose complex simulations. These executives use
tabular input and script files to control the execution of the simulations. The application
processors rely on mission dependent and independent tabular inputs to control simulation
processing. The use of these simulations as tailored by their associated tabular inputs has
proven effective as a means of mission support.

Analysis of this development process has disclosed three different classes of developers
and users: the software developer, the application engineer, and the operation specialist or
end user. Ideally, the software developer produces/modifies the software in accordance
with the specifications produced by the application engineer. The application engineer
develops the software requirements based on the mission requirements obtained from the
operation specialists and composes complex flight planning applications from the
produced/modified software. The operation specialist uses these applications to generate
and verify mission specific data.

While this process has proven effective in the past, there are limitations that may be
significantly reduced with recent advances in software engineering and workstation
technology. Briefly, the major limitations are:

• The textually oriented user interface of FDS and SVDS gives little insight into
how to compose and implement new simulation applications.

Application engineers must perform a large portion of the software development
and maintenance because only the application engineer has the engineering
knowledge necessary to understand the aerospace domain aspects of the
application.

The structure of FDS and SVDS application processors is very complex,the
internal data coupling factor is high, and the large granularity of the application
processors inhibits understanding of the processors and makes reuse of the
application processors or their subcomponents, very difficult.

Given that new software for Space Station Freedom must be developed in Ada and that
new applications may require over a million lines of code, engineers and analysts need
improved tools to support their planning and analysis activities. These tools should allow
the user to concentrate on the flight design and analysis activities rather than on the
software engineering process involved in developing complex software applications.

To reduce these limitations, Sofrech proposed to separate the concerns of the software
developer from those of the application engineer by the use of an Engineering Scripting
Language (ESL). The purpose of an ESL is to allow the application engineer to limit his
view of the problem space to those functional concepts that are inherent in the problem
space and not in the software design. Conversely, the software developer will be relieved
of the task of modifying complex flight planning application and able to focus his
development and modification activities to individual, nonintegrated, functionally reusable

components.

sO ecN 1



Sofrcch's approach to the specification of an ESL technology builds upon successful past
experience. SofTech has developed a proprietary graphical methodology for producing
complex applications from reusable components that does not require the engineer to be
knowledgeable in the underlying programming language. The Graphical Analysis and
Design Technique (GADT) methodology provided a close match to the requirements of the
ESL and served as an excellent starting point for the ESL specification.

The concepts underlying GADT come from both the Anti-Submarine-Warfare (ASW)
Common Operational Software Support System (ACOS) and the Structured Analysis and
Design Technique (SADT). AC_S was joindy developed by Sofrech and the Naval
Research Laboratory for U.S. Navy signal processing computers. It was developed to
allow signal processing engineers, rather than programmers, to develop real-time, complex
applications more quickly and at lower cost. The Navy relXXts that the operational use of
this concept has dramaticatly increased the level of code reuse and the productivity of signal
application designers and programmers. ACOS is the primary method the Navy plans to
use for developing future signal processing applications.

Sofl'ech extended the concepts of ACOS in its GADT Internal Research and Development
(IRAD) effort to provide a unified methodology for analysis, design, and implementation.
The experience gained on the GADT IRAD proved directly applicable to the analysis and
definition of the ESL.

Additional requirements for the ESL have resulted from the specific nature of the flight
planning applications and the anticipated environment for ESL development and use as
specified by the Software Technology Branch, NASA/Johnson Space Center (JSC). The
specification of an ESL conceptual model to meet the stated mission requirements is
contained in this report.

2



2.0 ESL Methodoloav ConceDts

The main goal of the ESL methodology is to enable an application engineer to develop
flight planning applications with reusable units corresponding to functional concepts natural
to his problem domain. Since the application engineer's domain is astronautical, not
software, the methodology must submerge the software aspects of the problem. The
methods used by the ESL to accomplish this are discussed in the following subsections.

2.1 Graphs

The ESL and its related components are meant to serve as an application generator for flight
planning applications. The ESL itself is a graphical language designed to represent the
applications. An ESL application represented in this graphical form is called a graph. A
graph represents the structure (or sub-structure) of an application and consists of a set of
nodes representing the processing elements of the graph and a set of queues representing
the directed flow of information through the graph. A graph may be represented as a single
node which is the parent node of the graph. A graph which is the underlying representation
of a node in another graph, is called a subgraph. Subgraphs allow hierarchical structures
of graphs and constitute reusable, application building blocks. Only noncyclic subgraph
networks may be specified. At the lowest levels, the nodes of a subgraph denote
primitives, processing elements composed of compiled code as opposed to further
subgraph decomposition.

A hierarchy of graphs is represented at the highest level as a single node, as illustrated in
Figure 2.1.-1. A single parent node, with an underlying hierarchy of subgraphs, is
referred to as a graph system.

soP--recH 3



\

/ / I X ., /
/ / I X / / \

/ / / I \

/ i / I

Figure 2.1-1 A Graph Hierarchy

Graph systems may be further connected with queues to form more complex systems.
These complex systems are also represented as a single node.

A subgraph may accept inputs and outputs via graph ports. These ports logically link the
ports of the parent node with input ports of nodes within the subgraph (representing the
node's underlying representation) and facilitate the hierarchical nesting of subgraphs within
nodes. A node port may be linked to a graph port to support hierarchical linkage between
the ports of a graph's parent node and the ports of nodes within the graph.

The use of graphs allow complex applications to be described in a manner that the
application engineer f'mds very natural to deal with. For instance, let us examine a
simplified graph system for a flight planning simulation depicted in Figure 2.1-2. This
graph clearly shows the main functional components of this application as well as the

relative sequencing between them. The Initialization node contains the mechanisms to get
the input data from whatever source has been intended. The Read Phase Input node gets
the input for that phase of the flight trajectory to be simulated. The Phase Simulation node
contains the actual flight simulation mechanisms. Finally, the lterator node causes control
to loop back to allow Read Phase Input to read the data for the next phase.

SO_-]'eCH 4



Inidalilzation

Read

Phase

Input

Phase

Simulation

Iterator

Figure 2.1-2 Top Level of a Flight Planning Application

Besides being very intuitive, the graph also represents a reusable structure for a class of
similar applications. It also localizes the areas where change may be affected. An
application engineer wanting to use a different atmospheric model could use a similar
application to serve as the starting point for the modification process. The engineer would
immediately realize that his desired change would not impact the Initialization, Read Phase
Input, or Iterator nodes so he would examine the decomposition of the Phase Simulation
node depicted in Figure 2.1-3.

Math Models

to New

State

Figure 2.1-3 Phase Simulation Subgraph

Looking at this subgraph the application engineer is again immediately cognizant of the
application structure at this level and that his desired change is localized to the Math Models
node. If the desired change had been to use a different kind of integration then the change
would be made to the Integrate to New State node. For our example, however, we would
decompose the Math Models node. This decomposition is shown in Figure 2.1-4.

SOI=[eC:H 5



Compute
Gravity
Forces h

Aunosphoic
Fotr,cs

Oven

Steedng

Figure 2.1-4 Math Models Subgraph

In the Compute Atmospheric Forces node we'll assume for our example that we have
found the proper place to substitute the new atmospheric model. It is immaterial whether
the new atmospheric model is a subgraph or a primitive. The engineer would use the ESL
Editor (discussed below) to detach the present underlying representation for Compute
Atmospheric Forces and then attach the new atmospheric model.

Again, the structure of the application at the level shown in Figure 2.1--4 is very
understandable. Even an application engineer with no prior experience with this application
can gain some familiarity merely by inspection. Once an application of this class is
understood then all applications in the class become accessible to the engineer. This "quick
startup" factor reduces the time for application training - another intended feature of the
ESL.

In addition, a software engineer responsible with maintaining primitives in this application
doesn't need to know anything about the application or its structure. Providing the
primitive with the computational capability to supply the proper data on its ports, is the
software engineers concern. In this sense, the ports of a primitive or subgraph constitute
it's only interface to other application components. This lessens the chances that
unanticipated "side effects" from a software change could affect an application.

2.2 Data Flow Principles

The ESL shall allow software applications to be described as a hierarchy of data flow
graphs in a manner similar to block diagrams. A data flow graph consists of a number of
nodes connected by a set of directed edges referred to as queues since they carry data on a
f'LrSt in, first out (FIFO) basis. A node represents an operation while a queue represents the
directed flow of data between nodes. These concepts ate illustrated in Figure 2.2-1.

_OF'I'EC:H 6



Node A

Queue

Node B

Figure 2.2-1 Basic Data Flow Between Nodes

From a user's perspective, one does not need to be concerned about the inner structure of a
node. Its execution behavior may be specified at the node level, and it may be reused
across different applications and treated as a black box.

The computational model of a data flow graph is based on data flow rules. These rules
specify that a node with an underlying operation is ready for execution when:

• All of its incoming queues contain the required amount of data for the processing
of the underlying operation.

• All of its output queues may accept data.

The ESL Shell (discussed in Section 3.2) manages the execution of the nodes.

The activation of a node does not require its underlying operation to be referenced by
another operation. Rather, the sequencing of the node execution is based on data flow
rules and the data flows between nodes as specified by the graphs.

Each node has a number of input and output po_s from which data may flow into or out of
the node. Each queue has a head and a tail. The head represents the end of the queue from
which data flows out or is dequeued. The tail represents the end of the queue which data
flows into or is enqueued. Each queue head may be attached to an input port of a node,
while each queue tail may be attached to an output port of a node. These concepts are
illustrated in Figure 2.2-2.

Queue Queue

Node :*_ _._;';:"_ _,=--: _-,_ Node
: _ _ _. InputOutput ._ ..::.:.::::: :_..r. _

(Queue blownup to Illustrate flow)

Figure 2.2-2 Moving Data Through a Queue

A node has a set of Node Execution Parameters (NEPs). The priority level of the
node is one such parameter. Additionally, there is a set of NEPs for each port of the node.

For input ports, these parameters refer to:

• The minimum number or threshold of data elements which must be queued up on
the input queue before the node is ready for execution.

sol=/ec H



The number of data elements which may be read one or more rimes from the
node's input queues and processed by the node's underlying operation.

The number of data elements which may be skipped before starting the read.

• The number of data elements which may be consumed and thus removed from
each of the node's input queues.

A data element is the basic unit of information in a queue, equivalent to one item of the
declared data type.

For output ports the NEPs refer to:

• The number of data elements which may be produced one or more times onto
each of the node's output queues.

The production of output information provides input information to a node downstream in
the graph and may make it ready for execution by meeting or exceeding its threshold NEP.
The production may also block the executing node if the output queue cannot accept more
data. The consumption of input information reduces the total amount of information
resident on an input queue which may cause it to drop below the threshold associated with
the node's input port. The consumption may also make an upstream node ready for
execution if it had been blocked by an output queue not able to accept data.

During. the execution of a node the values of the NEPs are used by the node's underlying
operauon to read, consume, and produce information. The mechanism for an operation to
effect a read, consumption, or production of information is by means of ESL command
statements (see Sections 3.2.4 and 5.0). These statements can be executed numerous times

and in any order that is logicaUy consistent with the node's underlying operation.
Command statements are used, to evaluate the current value of the NEPs and change the
values of the NEPs. If the values of the NEPs are changed, the new value of the NEPs are
used in subsequent read, consume, and produce processes for current execution or
subsequent executions, while the new threshold value is used in the next node execution
criteria.

2.3 Application Generation and Execution Using ESL

The generation of executable applications using ESL involves several components, these
components being the:

• ESL Editor

• Library and Library manager

• Graph Translator

• ESL Shell

• High Order Language (HOL) compiler.

S;OFI'ecH 8



TheESL Editorcomprisestheuserinterfaceandprovidesthemeansfor graphical
representationandmanipulationof thenodesandqueuesconstitutinganESLapplicationas
discussedabove. Thefunctionalityof theESLEditoris specifiedin section4.0.

2.3.1 Graph Schema

ESL graphs are the means by which the user defines the application. The multiple ESL
graphs as well as the the associated information that must be present for each graph are
stored in a component library and managed by a library manager. The graphs and their
associated information are represented in the library as graph schemas.

The ESL system shall use the Bauhaus system to manage the ESL graphs and associated
data. To do this the ESL editor must be able to access and manipulate the Bauhaus data
structures, called schema. This section discusses the Bauhaus system and the conceptual
representation of ESL information using Bauhaus schema. The accessing of the Bauhaus
schema by the ESL editor is discussed in Section 4.0.

2.3.1.1 ART

The Bauhaus is based on Inference's Automated Reasoning Tool (ART). ART is a
software tool kit for building expert systems. ART offers advanced features such as

symbolic modeling using schema, facts, and rule-based reasoning with forward and
backward chaining and pattern matching. "A schema is a collection of information about a

particular object stored in the database. ''I A schema has a name and contains information
such as object attributes and relations to other objects. Schema also allow the notion of
inheritance through the definition of subclasses. Subclass schemas inherit the types of
attributes and relations from their parent classes.

2.3.1.2 The Bauhaus System
Bauhaus is an application of the ART system oriented toward software and data reuse.

Bauhaus assumes a software development reuse paradigm of matching components from a
catalog with a selected specification and reusing a component matching the specification or
modifying and reusing the closest matching component if no exact match exists. 2 To

accomplish this, a knowledge representation for each catalogued component must be
created using the ART schema system. This knowledge representation captures the
attributes and relationships for each component as well as the constraints for i,,s reuse.
Bauhaus also features a template-based code generation capability.

2.3.1.3 Bauhaus as ESL Library_ Manager
The Bauhaus system shall be used as library manager for the ESL graphs and associated
tables. Associated with the top level (applications) graphs, subgraphs, and primitives, are
Bauhaus schemas. This concept is illustrated in Figure 2.3.1.3-1. A graph schema
represents the items found on a graph by the attributes included as schema. The attribute
values often reflect the name of the graph object and often reference the schemas or tables
associated with that graph object. For instance, suppose that the attribute Node Schema
must be included for all graph schema. When a graph for a particular application, such as
Top_LeveIApp, has three nodes defined, the schema for this graph has three
Node Schema attributes. The attribute values for the Node Schema attributes are

1 Extracted from the ART Programming Language Reference Manual by Sherry H. Walden
2 "Automated Software Development Workstation Project, Phase II Report, NAS -17766" delivered by
Inference Corp<xadon

SOl=l'ecl'l 9



Input_Processor,Phase_Execution, and Monte Carlo. Each of theseisa pointerto the

schemas fortherespectivesubgraphs. Furthermore,ifthe node Monte Carlo isa primitive
node, then the Monte Carlo schema has the attributes Source and Executable. The values

of these attributes pofflt to the source and executable files for this primitive.

Top_l._vel_App Schema

Node_Schema: Input_;
Node_Schema: Phase_Execution

Node_Schema Monte_

Graphics_File:

ift.x lure

! ........

Input_Processor
Schema

Phase_Execution
Schema

Executabl

_°°°°°°°

Monm C_lo "_
s,.hem 

100101010..

1301010001..

110110010..

Figure 2.3.1.3-1 A Graph Representation in Bauhaus Schema

A schema also has other attributes defined that point to other graph objects such as queues.
In the same fashion as above, the presence of a type of attribute denotes that: 1) the graph
has that object on it; 2) the name of the attribute value is the graph name for that object; and
3) the attribute value points to an information table or other data structure associated with
that object. This associated information may be stored in a data structure particular to the
ESL system or, as in the above case of the procedure source code and executable, some
other representation. In each case, however, a Bauhaus schema is used to reference the
appropriate information.

2.3.2 Graph Implementation and Execution

Prior to executing a completed application, the graphs must be translated to a high order
language (HOL) representation and subsequently compiled. A graph implementation is

an HOL representation of a hierarchical ESL data flow graph, that can be compiled by a
standard HOL compiler for subsequent execution.

c:Ol=l'eCl"4 10



Thetranslationprocessgeneratesthegraphimplementationby mappingthefeaturesfound
in theapplication'sgraphschemasto predefinedHOL constructs.Thegraph
implementationmustcreatetherun-timesmacturesandpreservetherun-timesemanticsof
thedataflow paradigmusedbytheESL. In agraphimplementation,ESLShelloperations
areimplementedby acollectionof procedurescalledESLcommand statements. A graph
implementation is conceptually composed of three pans:

• ESL command statements that are used to build the data structure.s used by the
ESL graphs.

• ESL command statements that are used by the primitives to access the ESL data
StrUCt_ireS.

• An ESL executive which shall control the execution of an ESL graph, preserving
the general principles of the data flow paradigm.

Collectively these are known as the ESL Shell services. The collection of Shell operations
and the HOL semantics arc the interface between the data flow graph and the underlying
target system. The ESL Shell is discussed in Section 3.2. That portion of the Shell
services constituting the ESL command statements arc specified in Section 5.0.

The translation process discussed above, involves no ESL functionality or run-time
execution characteristics. The functional requirements of the translator may be completely
described as the translation of the graph schemas and associated data into the graph
implementation. The functional specification of the translator is composed of the graph
schemas and the ESL Command Statements discussed in Section 5.0. The translation
process itself is highly dependent on the features and constructs in the HOL chosen for the

graph implementation and the tools that are available for use in performing the translation.
The design dependent aspects of the translation process are discussed in Section 6.0.

When the graph implementation is compiled and linked, the resultant load file is called the

graph executable. At run-time, the structures representing nodes and queues are
created. These created structures are used by the Shell for real-time execution and reflect an

expanded, one level data flow graph where each node has only an underlying primitive
operation. After a graph executable is elaborated, the identification of its parent node may
be passed to the Shell for execution which then allows data to start passing through the
graph. The run-time management of graphs, node execution, and queue management axe
provided by the ESL Shell and the HOL run-time operating system.

SO_IleCH l 1



3.0 ESL SDecification

The ESL is comprised of two parts: the components of the ESL, and the ESL Shell. This
section specifies both the ESL components and the ESL Shell.

3.1 ESL Components

The ESL components consist of the objects that must be dealt with while using the ESL
Editor. The basic ESL objects consist of nodes and queues.

3.1.1 Nodes

Each node in a graph represents a specific operation referred to as the underlying operation
of the node. The underlying operation may be either a graph (a subgraph) or a primitive
operation. Subgraphs represent complex portions of the application and are graphs in their
own right. Subgraphs were discussed in Section 2.1.

A specialization of a primitive node is the selector node. Selector nodes offer a conditional
selection as a graph editing capability. Selector nodes are graphically rendered as nodes
having one input port and multiple outputs ports (they may be further distinguished by a
different shape such as an oval instead of a box) An example of a selector node
represenadon is shown in Figure 3.1.1-1. The selector node's funcdon corresponds to an
IF .. THEN capability in tr_st languages and to a CASE statement in Ada. The capability
for comparison is, however, somewhat more limited since only single data values that
would be passed in through the input queue would be available for comparison. This
eliminates the opportunity for complex expression evaluation as the condition for selection.
For this reason selector nodes are considered as nonessential in any ESL implementation

and may be replaced by primitive nodes containing the desired selection criteria that are
written and compiled like any other underlying primitive representation.

Figure 3.1.1-1 A Selector Node

3.1.1.1 Ports

Each node has a specified number of input and output ports which provide a means for the
node's underlying operation to communicate with the rest of the system. Associated with
each port axe the data type and Node Execution Parameters, or NEPs, which specify how
the data elements enqueued on an attached queue are used by the node. A data element is
the basic unit of information in the queue, equivalent to one item of the declared data type.

The data elements may be moved or used by means of command statements. Command
statements are the only means to transfer data between a node's underlying operation and
attached queues.

I

SOFrec-H 12



A queue may be attached to a node port or the port may be unused. An unused port
specifies the absence of a connection. Any command statements which attempt to read or
consume data from an unused input port results in a run-time error (see Section 3.2.5).
Any command statement which produces data to an unused output port results in the data
being discarded.

There are four NEPs for each input port and one for each output port. The NEPs are
specified for each port in which a queue is to be attached or is currently attached. NEPs
which are specified for unused ports have no meaning and are ignored by the Shell for
scheduling purposes until a queue is attached.

The input NEPs are:

Threshold amount represents the minimal number of data elements that must be
present on the corresponding input queue before the underlying operation may
become ready to execute.

Read amount specifies how many data elements the node's underlying operation
will read from the corresponding input queue during the next execution of a
command statement which reads data from the associated input port.

• Offset amount specifies the number of data elements on the corresponding input
queue to skip before starting the read.

Consume amount specifies the number of data elements to be removed from the
corresponding queue on the next execution of a command statement which
consumes data from the associated input port.

The output NEP is:

Produce amount specifies the number of data elements which is to be produced
on the corresponding output queue during the next execution of a command
statement which produces data to the associated output port.

To further clarify these concepts a short example will be given. This example is based on
the assignment of NEPS shown in Figure 3.1.1.1-1. The example assumes fixed data
arrival rates for simplicity's sake.

so_-i'ecH 13



Input

Rate = 10 S_nplc/2 Sec.

Threshold = 10

Read = 10

Co_ume = S

L1_ut
Rate = 5 Sample/l Sec.

Threshold = 5

Read = $

Consume = 5

PROCESS 10

ADD $ I

1

[ Produce = 2 ]
I

Threshold = 20

Read = 20
Consume = 20

Threshold = 10

Read = 10

Consume = 10

[ Produce= I
I
I

Figure 3.1.1.1-1 Moving Data as Specified by NEPs

In this example the two nodes PROCESS I0 and ADD 5 both make input to the node ADD
30. The inputs to PROCESS 10 and ADD 5 may arrive asynchronously, but at the rates
specified in Figure 3.1.1.1-1. The node PROCESS 10 will execute when there are 10
items in the queue (since that is PROCESS los only queue and its threshold is 10). This
will occur for the first dine after 2 seconds, but thereafter every 1 second. This happens

because PROCESS 10 only consumes 5 data items each time, therefore, when 5 additional
items are added to the queue (at the rate of 10 items every 2 seconds) the node is ready to
fire again. Since PROCESS 10 produces 2 data items every execution, it will output 2 data
items every second after 2 seconds.

When the node ADD 5 executes, it consumes all of the data in its only queue. This occurs

every time 5 data items are accumulated which is every second according to the data arrival
rate. Therefore, it outputs 1 data item every second.

The node ADD 30 accumulates data in its queues until each queue reaches or exceeds its
threshold amount. On the queue connecting ADD 30 with PROCESS 10 this occurs every
10 seconds since 2 data items arrive every second and the threshold amount is 20. On the
queue connecting ADD 30 with ADD 5 this also occurs every 10 seconds. This means that
ADD 30 will produce 1 clam items every 10 seconds. If the arrival rates for input data to
ADD 30 were not the same for both queues, you would eventually exceed the capacity.of
one of the queues if the execution persisted for long. It is the responsibility of the engineer
to insure that this does not happen.

If the node has an underlying primitive operation then the Read, Consume and Produce are
assigned the value of one and the Offset is assigned the default value of zero when the node
is instantiated. The threshold is assigned the value equal to the maximum of (read + offset,

consume). If the node has a subgraph as its underlying operation, then the NEP values are
inherited from the node ports in the parent subgraph (which are linked to the corresponding

SOI=['eCH 14



graph port during instantiation). When a NEP value is specified by means of a command
statement then the value is assigned to the node port.

There is an additional NEP associated with the node which specifies the execution priority
of the node's underlying operation. If the priority of a node with a subgraph as its

underlying representation is specified, then all nodes in the subgraph are assigned the
priority of the parent node. If nodes in the subgraph also have subgraphs as underlying
representations, then the priority assignment also applies to their subgraphs. The
inheritance of priority continues down the hierarchy until all nodes have primitive
operations as their underlying operations. If not specified, the priority level for nodes with
underlying subgraphs is undefined.

The following events characterize the execution of a node's underlying primitive operation:

• For each input port from which data is to be read from a connected queue, a read
operation is effected.

• For each input port from which data is to be consumed from a connected queue, a
consume operation is effected.

• For each output port to which data is to be produced to a connected queue, a
produce operation is effected.

• For each NEP associated with each port, its current value may be evaluated.

• For each NEP associated with each port, its value may be assigned.

• Other ESL command statements may be invoked.

• An arbitrary set of HOL procedures or functions may be executed.

The ESL imposes no restrictions on the number of times or the order in which the above
events may occur during the execution of a node's underlying operation.

_,1,1,2 Primitive Operation
The primitive operation is the fundamental unit of processing in an ESL-designed
application. The function performed by a primitive operation may be something simple,
such as adding data from input queues, or something quite complex, such as a hierarchy of
called procedures commonly found in structured programming. The primitive operation
also includes the command statements for reading, consuming and producing data and
other functions. Regardless of the function, primitive operations are the basic, reusable
components in an ESL application.

Data that is read or produced by a pfimidve may represent information to be transformed.
Alternatively, data may represent control information which affects the functionality of the
primitive. Data may be references (pointers) to variables which are dynamically created by
one primitive operation and passed, via queues, to another primitive operation. References
to ESL graph structures are merely references to variables which are linked to represent the
application data flow structure. Data may be processed in any manner consistent with the
HOL. The same primitive operation may represent the underlying operation of more than
one node.

so_-rec H 15



The implementation of primitive operations shall be consistent with the HOL.

3.1.2 Queues

A queue on an ESL graph represents the directed flow of information from node to node

within a graph. Queues carry information on a first-in, first-out basis. Queues may be
merged and replicated as indicated in Figure 3.1.2-1. A merged queue takes the input from
multiple output ports for appending to the tail of the queue. The infomaafion deposited on
the queue is the sum of all information sent from all connecting nodes. A replicator queue
has multiple input ports (on nodes receiving information from the queue) attached to the
single queue. A node belonging to any connecting port may remove information from the
queue. This may affect the execution eligibility of other connecting nodes. Queues are
named on an ESL graph. A name given to the queue by a user should reflect the type of
data that the queue will contain. Queue names facilitate the matching of ports to queues.

Merge - Two output ports mapping to the same queue

Replicator - Replicates data to additional input ports

Figure 3.1.2-1 Merged and Replicator Queues

At mn-firne, each queue is a structure which is created by a command statement. The
identifier of the queue is returned to allow the queue to be connected to nodes. When a

queue is created, the data type of the elements to be transported over the queue and its
capacity are specified. The capacity represents the maximum number of data elements
which may be on the queue at any one time.

Each queue may may be defined to carry information of any data type, but the data types of
its source and sink must agree. A source or sink may be a node connected to the queue or a
different node which has an underlying primitive operation with a command statement

having access to the queue identifier. An ordered set of data elements may be supplied by
the source to a queue by the execution of a command statement. A number of elements

may be removed by the sink from the head of a queue by the execution of a command
statement.

A specialization of the queue is the trigger queue. A trigger queue is a typeless queue used
to establish a particular execution sequencing between two or more nodes. Trigger queues
appear graphically as other queues with the exception that they are not named and and the
lettter T (denoting trigger) appears on the graph next to the queue construct (i.e. the
arrowed line).

SOFreCH 16



3.2 Shell

The Shell is a collection of procedures which support ESL graph instantiation,
modification, execution, and data buffering and movement of data elements to and from

queues. The precise division between the Shell software's and the operating system's
functionality depends on the target machine's operating system.

3.2.1 Node Scheduling and Execution

The scheduling and execution of nodes within the graph is based upon data availability.
The responsibility for maintaining node scheduling and execution rests with the Shell.
Node execution will terminate either after correct execution, whenever execution is aborted,
or upon completion of error handling and reporting (see Section 3.2.5).

While a graph is executing (data is flowing through the graph) the Shell performs the
function of determining when a given node is ready to execute. Subsequently, the Shell
must take the necessary actions to cause the execution of the node's underlying operation.
While a node with a subgraph for an underlying operation behaves as a single node as far
as the user is concerned, such a subgraph acts like a macro definition in that it is replaced
by a more complex network of nodes. Some of these nodes may have underlying
subgraphs and axe, in turn, expanded like macros. The expansion is complete when a
graph contains only nodes with underlying primitives. Each of these nodes will execute

independendy and subgraphs will no longer be distinguishable to the Shell.

Information in a graph flows from node to node via the interconnecting queues. As
previously stated, a node's underlying operation is ready to execute when each of the

node's input queues contains at least the threshold amount specified by the associated NEP
and each of the node's output queues can accept data. An output queue may accept data if
its capacity requirement has not been exceeded. The capacity requirement specifies that the
queue's current size plus the produce amount of the source node is less than or equal to the
queue's capacity.

Once the scheduling criteria have been met, the Shell schedules the node's underlying
operation by submitting it to a prioritized node execution list. The level of priority is
specified by the node's priority level NEP. These pdoritized lists maintain the

identification of each operation which is ready for execution. The number of priorities is
implementation dependent, but the implementation shall support at least two levels of
priorities. After a node's underlying operation has completed execution, the next node with
the highest priority is removed from the node execution list and its underlying operation is
then dispatched for execution.

A node may be on only one execution list and may be listed only once. A node, with an
underl.ying operation which is executing, is by definition not ready and is not on any node
execution list. The occurrence of one of the following events is necessary, but not
sufficient, for a node to be made ready for execution:

After a consume operation the number of remaining elements on the associated
input queue causes the queue to fall below the capacity requirement. This sets the
upstream node to a ready condition if all of its input data requirements are
satisfied and all remaining output queues axe below the capacity requirement.

SC)_IleCH 17



After aproduce operation the number of remaining elements on the associated
output queue causes the queue to go above the threshold requirement specified by
the threshold NEP of the respective input port of the downstream node. This sets

the downstream node to a ready condition if all remaining input data requirements
are satisfied and all output queues are below the capacity requirement

• After a node's underlying operation has executed, the node is put on an execution
list if it continues to satisfy the scheduling criteria.

• After a queue is disconnected from a node, the node may then meet the scheduling
criteria and be put on a node execution list.

• During graph start up the Shell may put any nodes which meet the scheduling
criteria on a node execution list.

The time at which the scheduling criteria are checked for the execution node is after its
underlying operation has executed. The scheduling criteria for neighboring nodes are
checked during the consume and produce operations.

3.2.2 Queue Management

The Shell is solely responsible for the management of queues. The functions performed on
a queue include removing data from the head of a queue and adding data to the tail of a
queue. All queue management functions shall be non-interruptible with respect to other
queue management functions on the same queue. The Shell shall be capable of servicing
requests from the command statements to read information from the head of the queue,
write information onto the tail of a queue, and delete dements from the head of a queue.
Reads shall be performed in a nondestructive manner (i.e., read, consuming no data) with a
specified offset indicating the number of data elements to skip prior to starting the read.

An error occurs whenever the queue from which data is to be read or to be placed, does not
exist (see Section 3.2.5).

3.2.3 Graph Management

Graph instances are built at ran-time by the graph executable, the compiled and linked form
of the graph implementation. The graph implementation is a static description of the graph
topology. Graph instances are built by the execution of a sequence of command statements
(in the graph implementation) which instantiate nodes and queues and connect them
together. The instantiation of a node requires the execution of a command statement which
specifies the node's underlying operation as either a subgraph or primitive operation. If the
statement specifies the underlying operation as a subgraph, then as part of the instantiation
of the node its underlying subgraph is also instantiated. This is a re.cursive descent process
which terminates when the complete, underlying hierarchy of subgraphs have been
instantiated and all nodes at the lowest level of the hierarchy have underlying primitive
operations. Once a node is instantiated, regardless of its underlying operation, its
identification is returned to the Shell.

All graph instances are instantiated as a result of the instantiation of the graph's parent
node. When a structure representing an instance of an ESL graph is built, an identification
is returned via the parameters in the command statement creating the graph structure. This

SOF_eCH 18



identifier representstheidentificationof thegraph'sparentnode.Theparentnode
identificationis usedfor all subsequentoperationsaffectingtopologyorcontrol thatare
madeonnodesandqueues.

Theexecutionof agraphsystemmay be started or stopped by passing the identification of
the node which represents the graph system to the Shell. A command statement is used to

effect this operation. The execution of a graph is the execution of the underlying operation
of the nodes within it.

Although ESL graph execution is driven by data availability to nodes, the Shell does
provide means for command statements to monitor and control the execution of the
application system.

3.2.4 Command Statements

Command statements represent Shell services for building and controlling graphs. It is
important to realize that the execution of command statements occurs at run-time. The
sequential arrangement of command statements present in the graph implementation
represents the instructions to build the run-time structures, connect them, pass data through
the graphs, and control the graphs. Some command statements are executed before any of
the primitives and arc used to build and connect the run-time structures. Other command
statements are used as pan of a node's underlying primitive operation and hence execute as

pan of a primitive operation. Some of these statements move data through the graph by
reading and depositing data on the queues; others may cause the halting of execution due to
an error condition.

There are four main classes of command statements. The following summarizes the
minimal set of capabilities for each class of command statement.

1) Statements to create the topology of the graph system:

• Instantiate a node with a subgraph or primitive operation.

• Create and connect queues.

2) Provide support to move data to and from queues:

Read with offset, consume, and produce data onto a node's input and output
queues without reference to the node's underlying primitive operation or the NEP
values.

• Read with offset, consume, and produce data onto a queue which is not attached
to the node.

• Flush a queue to remove all or pan of the data from the queue.

• Initialize a queue with data. This is a combination of flushing a queue and placing
data onto a queue.

• Move data from an input queue directly to an output queue.

3) Evaluate/assign values to Node Execution Parameters:

SOh-reCH 19



• Evaluate current NEPs for the priority level and the threshold, read, offset,
consume, and produce values for each port.

• Assign new NEP values.

• Increment, reset and evaluate a counter which is available to track the number of
times a node has executed.

4) Start or stop executing particular graph systems and provide state information about a
node or queue:

• Start or stop the execution of an instantiated graph system. The graph system
may be restarted without loss of data within the graph system.

• Determine if a node is ready to execute.

To illustrate the use of these commands statements an example is given below showing
those portions of a graph implementation that build the part of a graph system featured in
Figure 3.1.1.1-1. In this example we show the command statements that build the nodes
featured in the graph and specify the interconnectivity between those node, s. This
specification includes the NEPs on ports that connect to queues created in our example. To
fully understand all commands and types used in the example one should refer to the ESL
Command Statements specified in Section 5.0.

..................................... declarative portion

PROC_I0: NODE_ID := CREATE_GRAPH( PARENT_NODE => NIL);

-- Here we assume that PROCESS 10 node has a subgraph as an underlying
-- representation. The value of NIL indicates that this is a top level graph.

ADD_5: NODE_ID := CREATE_NODE( PARENT_NODE => NIL,
OPERATION NAME => "ADD5") ;

-- The node ADD 5 is a primitive node.

ADD_30: NODE_ID := CREATE_NODE( PARENT NODE => NIL,
OPERATION NAME => "ADD30") ;

-- The node ADD 30 is also a primitive node.

PROCI0_OUTI: OUTPUT_GRAPH_PORT;

ADD5 OUT1: OUTPUT PORT;

ADD30_INI: INPUT_PORT;

ADD30_IN2: INPUT_PORT;

-- Ports would be listed on the graph schema for each node. These would be known
-- apr/or/since the input and output of any primitive would need explicitly specified

SO_-[eCH 20



-- when the primitive is written. At the time that the graph implementation is being

-- built, all primitive nodes would be mapped to existing primitives.

package INTEGER_Q is new QUEUE_COMMANDS ( QDATA => INTEGER);

package MEAN MODE_Q is new QUEUE_COMMANDS(
QDAT--A => MEAN MODE TYPE);

-- MEAN_MODE_TYPE is the type of the output of node PROCESS 10 and would

-- appear in the graph schema for this node It would be declared in another package
-- that would be "with'ed in" by this unit.

MM_Q: QUEUE_ID := MEAN_MODE__Q.CREATE_Q(

SUM5_Q: QUEUE_ID := INTEGER__Q.CREATE_Q(

CAPACITY => 40);

CAPACITY => 20);

-- These declarations create the queues passing data from PROCESS 10 and ADD 5

-- to ADD 30. MM_Q is the queue connecting PROCESS 10 to ADD 30 and SUM5_Q

-- is the queue connecting ADD 5 to ADD 30.

......................................... executable portion ....................................

-- These statements connect the structures created above and set the execution parameters

-- for the node ports. The procedures setting the execution parameters could be executed

-- in the primitive nodes containing those ports, if desired.

MEAN MODE Q.CONNECT OUTPUT Q(

NODE NAME => PROC i0,

PORT => PROCI0 OUT1);

QUEUE_NODE => MM_Q,

MEAN_MODE_Q.CONNECT_INPUT_Q(

NODE_NAME => ADD_30,

PORT => ADD30 IN1);

QUEUE_NODE => MM_Q,

INTEGER_Q.CONNECT_OUTPUT Q(QUEUE_NAME => SUM5_Q,

NODE_NAME =>ADDS5,

PORT => ADD5 OUT1);

INTEGER_Q.CONNECT__OUTPUT_Q(QUEUE_NAME

NODE NAME => ADD 30,

PORT => ADD30 IN2);

=> SUM5 Q,

NEW PRODUCE NEP( NODE NAME =>

-- PORT => PROCI0 OUT1,

NEW VALUE => 2);

PROC_IO,

NEW PRODUCE NEP( NODE NAME =>

-- PORT => ADD30_OUTI,

NEW VALUE => I);

ADD 5,

so ecs 21



SET NEPS ( NODE_NAME => ADD_30,
PORT => ADD30 IN1,

NEW READIN => 20,

NEW OFFSET => 0,

NEW--CONSUME => 20,

NEW--THRESHOLD => 20);
m

SET NEPS ( NODE_NAME => ADD_30,

PORT => ADD30 IN2,

NEW READIN => i0,

NEW OFFSET => 0,

NEW CONSUME => I0,

NEW THRESHOLD => I0);

................................................ end example ......................................

3.2.5 Error Handling

The ESL necessitates the detection, notification, and recovery of certain data flow errors
beyond those specified by the HOL. The following identifies the minimal class of errors
which are trapped and handled by the Shell:

• An attempt for a command program to read or consume data which does not exist
on the associated queue.

• An attempt to produce data such that the output queue's current size plus the
produce amount is greater than the queue's capacity.

• An attempt to read, consume or produce data to or from a non-existent node port.

• An attempt to read or consume from a node port which is not connected to a
queue.

• An attempt to disconnect a queue from a node port to which it is not connected.

• An attempt to link a graph port to a node port when either port has been
previously linked.

SO_-[eCH 22



4.0 User Interface Description

The user interface for the ESL system is the ESL Editor. This section specifies the
capabilities and assumptions for the ESL Editor necessary to produce ESL applications.

4.1 The ESL Editor

The ESL Editor allows the user to create and modify graphs, specify graph attributes,
command the storage and retrieval of graphs, and link the primitive nodes to their
corresponding executables. The ESL editor is graphical in its operation, using a mouse and
pointer to select menu commands and select and manipulate objects on the screen.

As noted in section 2.2 the ESL Editor shall access the Bauhaus system to access and
manipulate the Bauhaus schema structure. To access Bauhaus capabilities, the ESL editor
shall make use of the ART interfaces. Use of these interfaces shall enable the ESL Editor

to read and modify graph information residing in the Bauhaus schemas and retrieve graph
data referenced by the Bauhaus schemas. This modification of the schemas is invisible to

the user who deals only with the graphs and graph objects appearing on the screen.

4.2 Menu Commands

The following menu commands, though arranged and categorized in a menu-like fashion,
are meant to define a list of conceptual capabilities necessary in the editor. As part of a
design process prior to any implementation, screen modalities specified by some of the
capabilities discussed in this section, would need to be considered. All functionality here is
specified in a menu form for consistency and ease of discussion. Command semantics are
discussed, particularly where the command would necessitate interaction with the Bauhaus

system. An overview of the menu structure is shown in Figure 4.2-1.

SO_-'_eCH 23



Menus

I
File
New

Open
Close
Attach
UnAttach
Save
Save As
Delete
Print
Quit

I
Edit
Undo
Clear

Object Attributes
Queue Connections
Initialize Queue
Tunnel Queue Connection

Level

GrapWsubgraph Structure
Parent
Child
Notes
Tool Panel

i
Create
Node
Selector
Staircase Nodes
Create Parent

Decompose
Queue

Merge
Replicate
Trigger
Label

Translate Attach Label

Validate Current Graph
Validate Entire Graph
Generate Hol Code

Figure 4.2-1 ESL Menu Overview

4.2.1 File

4.2.1.1 New

This command causes a new (empty) editing window to appear.

It also causes a Bauhaus schema to be instantiated corresponding to this new graph. This
schema will initially be assumed to be that of a top level graph.

4,2.1.2 Open
This command causes the selected item to be opened. If the selected item is the naxt¢ of a
graph or subgraph in the Bauhaus taxonomy (Tool Panel window - see 4.2.4.7), the graph
of the selection is shown. If the selected item is the node attached to a subgraph, then the

attached subgraph is displayed. If the selected item is the name of a prirnidve in the
taxonomy or the node attached to a primitive, the execution parameters and the ports of that
node are shown. If the selected item is a selector node, the selector dialog box appears. If
the selected item is an unattached node, a queue, a merge or replicator (box), then this
command is dimmed.

4,2,1,3 Close
This command causes the displayed window to close and the files of the graph that was
displayed in the window and its associated schema to also close. If there were unsaved
changes made to the graph, a dialog box appears asking the user ff they wish to save the
changes.

SOFrec:H 24



4.2.1,4 Attach

This command causes the selected primitive or subgraph selected in the Tool Panel window
to be attached to the node selected when the Tool Panel option in the Level menu was
chosen. This command is dimmed unless an unattached node on a graph has been selected.

The command also causes the name of the attached subgraph or primitive to be annotated in
the Bauhaus schema.

4,2,1.5 UnAttach
This command causes the subgraph or primitive attached to a node to become unattached.
This command is dimmed unless an attached node on a graph, has been selected.

This command also causes the name of the (previously) attached subgraph or primitive to
be removed from the Bauhaus schema for this node.

4.2,1.6 $1tv¢

Choosing this command causes the changes that were made to an application at any level to
be saved. If the original application was configuration controlled, then choosing this
command will be treated as ff the Save As command were chosen and the Save As dialog
window will appear, asking for the name to save the application under. A graph that is
baselined may not be modified and saved under the same name, but must have a new name
and be saved to a nonbaselined file.

The Bauhaus schema is appropriately annotated with the changes that were made. If this
graph was referenced by other graphs and this graph was edited under the context of one
application, then a separate schema for this graph would be created and the new changes
would only be reflected in the newly created schema.

4.2.1.7 Save As

Choosing this command causes the changes that were made to an application at any level to
be saved. A Save As dialog box will appear, asking for the name to save the application
under;, otherwise the semantics are the same as the Save command described above. The

user must save the graph in his own directory as he cannot save to a baselined directory.

If the window is saved as a main graph or subgraph, the Bauhaus schema is appropriately
annotated. If this new graph is derived from an old one, a new Bauhaus schema is also
created. This new schema may reference all appropriate subgraphs and other data,
differing only from the original in those aspects of the graph that have been modified.

4.2.1.8 Delete

Choosing this command causes the selected item(s) to be deleted. If nothing is selected
then this command is dimmed on the menu.

If the selected items have Bauhaus schema representation then that representation is also
deleted. If the selected item is represented by an attribute/attribute pair then that pair is
deleted from the appropriate schema. If the deleted item is a node then the schema
representing that node is deleted (along with associated table data) and the attribute/attribute
value pair on the parent graph denoting the deleted node is also deleted.

SOFI'eCH 25



4.2.1.9 Print

Choosing this command will cause a dialog window to appear, asking the user if they wish
to print only the displayed graph (or table), the entire graph structure, or the entire graph
structure with all table information.

4,2.1.10 Ouit

Choosing this command causes the ESL Editor to quit. If there have been any changes
since the last save was made, a dialog box appears, asking the user if they wish to save the
changes.

4.2.2 Edit

4,2,2,1 Undo
Choosing this command causes the effects of the last editing command to be undone. This
command applies only to editing commands and not to file manipulation commands such as
Save.

4.2.2.2 Clear

Upon the user choosing this command, all ESL components appearing on the screen are
deleted. The schema representing the window is not deleted nor is the attribute/attribute
value pair referencing the parent schema. However, the attribute/attribute value pairs
representing the deleted contents of the screen, are deleted.

4.2.2.3 Obiect Attributes

This command cau_.s the attributes window of the selected object to appear. If the selected
object is a queue then the queue attributes for that particular queue are displayed. If the
selected object is a node then the node attributes are displayed, showing the ports the node
has, if they are input or output ports, the associated variable names (if they are mapped),
how many variable values are read from that lxa't at a time, the offset, and how many are
consumed. If the selected object is a selector node then the conditions for selection are
shown.

4.2.2.4 Queue Connections

This command causes the display of the Queue Connection Table. This table specifies the
sending and receiving ports for each queue (if the inputs have been joined or the outputs
have been replicated) identifying the variables. Connections may be modified by the
editing of this table. This command is dimmed if no queue is selected.

4.2.2.5 Initialize Oueue
Choosing this command causes a dialog box to appear, allowing the user to enter data on
the queue. It is the responsibility of the user to ensure that all data is specified to the
individual component level and meets all constraints of the type corresponding to this
queue. Applications with queues initialized this way will always have the same specified
values upon graph initiation until changed by the user. If the graph containing the queue is
reused in another application, the queue is still initialized in the same way.

4.2.2.6 Tunnel Oueue Connection

When a queue (data flow) is selected and this command is chosen, the graph consmact
(arrowed line) denoting this queue is hidden. The port-queue tail connection or queue
head-port connection may be tunneled separately, causing the queue to appear on one

sol=rec:H 26



graph, but not on another. This command is dimmed if no queue is selected. The
attribute/attribute values on the schema and the queue listing in the queue connection table,
are not affected.

This command is used to control the number of arrowed lines on a graph in an attempt to
improve graph readability. One example of the use of this command would be to simplify
the appearance of a graph containing a node reading input data from some source and then

passing that data to other nodes. Since the input node (the node reading the data) would
have many, perhaps hundreds, of connections from its output ports to queues linked to
other nodes, this would cause a cluttered and confusing graph if all connections that
emanate from the input node, were shown. To control the complexity of the connections
on the graph, the outputs from the input node could be tunneled. This would cause the
arrows emanating from the input node to be hidden. The arrows denoting the tunnelled
queues would only appear on the (sub)graphs containing nodes that receive inputs from
those queues. These arrows would appear as if they represented queues that are connected
to a graph port, i.e. the arrows have no tails connected to a node on the graph.

4.2.3 Create

4.2.3,1 Node

Choosing this command causes a node to be created on the current graph/subgraph. The
created node can then be dragged (using a mouse) to the position desired.

This command causes a subnode attribute to be created on the associated Bauhaus schema.

The value of this attribute is the name of the associated subgraph or primitive. This value
should reference the schema for the associated subgraph or primitive. The name used for

this node is system-assigned initially. The user may change the name of the node by the
use of the label command and this will cause a resultant change on the graph schema(s).

4.2.3.2 Selector

Choosing this command causes a selector node to appear on the graph. The selector node
may then be dragged (using the mouse) to the desired location.

A selector node is considered a node for the purposes of Bauhaus schema definition.

4.2.3.3 Staircase Nodf_

Choosing this option causes a dialog box to appear asking how many nodes need to be
created. When this is specified the specified number of nodes will be created and placed on
the screen.

Bauhaus schemas are created for each of the created nodes. An attribute for each node is

added to the schema for the graph into which the nodes were placed. The name of the
attribute value in each case is the name of the created node. The attribute value references

the newly created, associated schema for each node.

4.2.3.4 Create Parent

Choosing this command causes a parent graph to be created for the current graph. The
created parent graph will have a single node with the input/output of the current graph
represented.

SC) I=reCH 27



A Bauhausschemafor thecreated parent graph will also be instantiated. This schema will
reference the child graph as a subgraph. The schema will have a value of NIL for the
attribute value corresponding to the parent attribute.

4.2.3.5 Decompose

Choosing this command while a node on the graph is selected, indicates that the selected
node will have a subgraph as the underlying operation. A schema is then instantiated for
this node and the schema representing the present graph is then annotated with an
attribute/attribute value pair referencing the decomposed node.

4.2.3.6 Oueue

This command causes the mouse pointer to become an active attachment device (a change in
shape of the pointer also occurs). When the mouse button is clicked while over the output
region of a node, a line is anchored on the chosen output region and extends to the mouse
pointer wherever the pointer may he moved on the screen. The chosen node is interpreted
to be the head end of the queue (and thus the tail of an arrow denoting the queue on the
graph). When the mouse button is again clicked while the mouse pointer is over an
allowable input region of a node, that node is chosen to be at the tail end of the queue (and
thus the arrow will point to this node on the graph).

A queue attribute table representing this queue shall be created. This command also causes
a queue attribute to be created on the graph's schema. The name of the attribute value for

this attribute shall be the name of the queue. The attribute value shall point to the
appropriate queue atu'ibute table.

4.2.3.7 Mer2e

This command is dihamed unless a queue is selected, i.e. unless an arrow is highlighted on
the displayed graph. Choosing/his command when a queue is selected, shall cause the
nodes on a graph to be highlighted whenever the mouse pointer is placed over them. If the
mouse button is clicked while a node is highlighted, that node is selected and an arrow shall
be drawn on the graph from the output region of the selected node, to the queue displayed
when the command was chosen.

4.2.3.8 Reolicate

This command is dimmed unless a queue is selected, i.e. unless an arrow is highlighted on
the displayed graph. Choosing this command when a queue is selected, shall cause the
nodes on a graph to be highlighted whenever the mouse pointer is placed over them. If the
mouse button is clicked while a node is highlighted, that node is selected and an arrow shall
be drawn on the graph from the queue displayed when the conmaand was chosen, to the
input regions of the selected node.

This command causes the contents of the indicated queue to be checked as part of the
scheduling of all the nodes receiving output from this queue.

The amount read and consumed from the queue is logically, separately maintained for all
receiving nodes, i.e. information is not dequeued unless all nodes have consumed it.

4.2.3.9 Trigger

The screen semantics of choosing the trigger command are identical to those of the queue
command.

s°_--recH 28



4,2.3.10 Label

Choosing this command allows the user to type in a name on the graph.
considered as a block of text until attached to a graph object.

This name is

4,2,_,11 AttaCh L_b¢l
Choosing this command allows a node, queue, or graph variable to be named. This name

replaces the system assigned name on the Bauhaus schema.

4.2.4 Level

4.2.4.1 Graph/subgraph Structure
This command graphically displays the hierarchies of the chosen application.

The Graph/subgraph Structure view is of the whole application or top level graph
hierarchy, no matter where in the hierarchy the command is chosen.

4,2,4,2 Parent

Selecting this command will cause the parent graph to be displayed. If no parent node
exists, then this command is dimmed.

4.2.4.3 Child

Choosing this command while a node on the displayed graph is selected, causes the
subgraph representing the selected node to be displayed. If no node with a subgraph is
selected, then this command is dimmed.

4.2.4.4 Qu¢¢¢ Attribute Table

This command displays the variable name and capacity of the all queues on the graph or
just a selected queue (if only one is selected). This table displays all the queues of a graph,
the variables they are labeled with, the ports they are mapped to, and a textual description
of each variable.

4.2,4,5 N0te_

Choosing this command causes a Notes box for the selected graph node to appear. This
Notes box contains a textual description for the selected node. This command is dimmed
until a node has been selected.

If a user wishes to add additional comments to the notes box for a baselined application,
then a new notes box is created containing the old textual description plus the changes the
user has made, and the attribute value in the node schema is changed to reference this new
notes box. The modified application will, of course, be saved in the user's account and not
in the baselined directory.

4.2.4.6 Tool Panel

This command causes the Bauhaus Tool Panel windows: Taxonomy, Matches, and
Bookmarks to be displayed.

SOI=I'eCH 29



4.2.5 Translate

4.2.5.1 Validate Current Grat_h

Choosing this command causes various cliecks of the displayed graph to be made. These
checks include type checking when ports axe connected through a queue, to ensure that the
data structures are compatible and the data will be correctly interpreted by both port
processes. If a mismatch occurs, a dialog box stating the mismatch will appear. Another
check would aseertain if any queues or ports are not mapped. A dialog box would notify
the user of any unmapped queues or ports, however this would not stop the graph from
being a valid graph.

4.2.5.2 Validate Entire Graoh

This command performs the same checl<s as the Validate Current Graph, but does so for
the entire graph system.

4.2.5.3 Generate HOL Code

This commands, causes the translator to translate the graph schemas representing the
current graph to be translated to ESL command statements, in HOL code. A dialog box
will appear querying the user for a file name to contain the resultant source code.

SOFI'eCH 30



5.0 Engineerina
SDecification

Scriotin0 Lan0uage Command Statements

This section defines and specifies command statements that arc to h¢ supportex:lby ESL
Shell services. Several Shell services are predefined. They are implemented as either
functions (which return a value), or procedures. These command statements may be used
in combination with other Ada statements and may be invoked from within a primitive
operation.

These commands statements are specified in Ada because of that language's expressive
capabilities. This is not meant to mandate the use of Ada, but rather to more precisely
specify the characteristics that the ESL Command Statements need to possess.

The specification of the parameter modes for the following interfaces assumes that the run-

time structures created by the command statements will be globally visible to the ESL Shell
executive processes.

5.1 Command Statement Syntactic and Semantic Rules

These statements are used to build and control graphs. They are organized into the
following categories:

• Create graphs and nodes and modify their Node Execution Parameters (NEP).

• Create queues and move data to and from queues.

• Set and remove triggers.

• Requests to the Shell to start/stop executing particular graph systems and provide
state information about a node.

5.1.1 Commands to create and modify nodes and NEPs

5.1.1.1 CREATE GRAPH - Instantiate a Graph
The CREATEGRAPH function instantiates a graph system smacture which is used for
nodes which have subgraphs. The function definition of CREATE_GRAPH is:

function CREATE GRAPH (PARENT NODE: in NODE ID)

return NODE ID;

The parameter to the CREATE_GRAPH function is:

PARENT_NODE is the parent node identifier.

Characteristics of the CREATE_GRAPH function are:

SOF/eCH 31



All nodes with subgraphs should have an associated CREATE_GRAPH
statemenL

The CREATE_GRAPH statement should appear in the node's underlying
operation before any CREATE_NODE statements.

If no parent graph system is specified for the CREATEGRAPH operation, then
a NON_EXISTINGNODE_ERROR is raised unless the node to be instantiated

is the top node in the system. The top node is identified by the PARENT_NODE
parameter having the value NIL.

A node may only have one subgraph associated with it An attempt to create a
graph system for a parent node which already has a subgraph will raise
PRE_EXIS 1TING_GRAPH_ERROR.

5.1.1.2 CREATE NODE - lnstantiate a Ngde

The CREATE_NODE function instantiates a node and specifies the underlying operation.
The underlying operation is a procedure identifier. The function definition of
CREATE_NODE is:

function CREATE NODE (PARENT NODE: in NODE ID;

OPERATION_NAME: in STRING) return NODE_ID;

The parameters to the CREATE_NODE function are:

PARENT_NODE is the parent node identifier.

OPERATION_NAME is the name of a procedure which specifies the underlying
operation su'ucturc.

Characteristics of the CREATE_NODE function are:

• The value returned from the CREATE_NODE function is the identifier of the
node.

• The the default values for the NEPS are:

READ 1;

OFFSET 0;

CONS LIME 1;

THRES HOLD 1;

If no parent graph system is specified for the CREATE_NODE operation, then a
NON_EXISTING_NODE_ERROR is raised unless the node to be instantiated is

sO ecN 32



thetopnodein thesystem.Thetopnodeis identifiedby theparentnodehaving
thevalueNIL.

5.1,1,3 LINK GRAPH INPUT PORT - Connects a Graoh Int)ut Port

with i_ Node Input Port
The LINK_GRAPH_INPUT_PORT procedure logically connects a graph input port with

node input port. The connectivity is logical since the ports of the graph's p.arent node are
logicallythesame ascertainportswithinthegraph.The procedure defmluon of
LINK_GRAPH_INPUT_PORT is:

procedure LINK GRAPH INPUT PORT (GRAPH_NAME
GRAPH PORT: _n GRAPH INPUT PORT;

NODE NAME: in NODE ID;

PORT: in INPUT_PORT);

: in NODE ID;

The parat_ters to the LINK_GRAPH_INPUT_PORT procedure are:

GRAPH_NAME is the parent node identifier.

GRAPH_PORT specifies the graph's port.

NODE_NAME is the identifier of a previously created node.

PORT is the port number of the node, NODE_NAME, to be connected.

Characteristics of the LINK_GRAPH_INPUT_PORT procedure are:

• Ifthe graph structure specified by GRAPH_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by GRAPH_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• Ifthe portspecified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• Ifthe port specified by PORT is already connected to another graph port then
CONNECTIVITY_ERROR is raised.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

5,1,1,4 LINK GRAPH QUTPUT PORT - Connects a Graph Output

Port with a Node Output Port
The LINK_GRAPH_OUTPUT_PORT procedure logically connects a graph output port
with node output port. The connectivity is logical since the ports of the graph's parent
node are logically the same as certain ports within the graph. The procedure definition of
LINK_GRAPH_OUTPUT_PORT is:

SO_-[eCM 33



procedure LINK GRAPH OUTPUT PORT (GRAPH NAME

GRAPH_PORT: in GRAPH_OUTPUT_PORT;

NODE_NAME: in NODE_ID;

PORT: in OUTPUT_PORT);

: in NODE_ID;

The pammaem to the LINK_GRAPH_OUTPUT_PORT procedure are:

GRAPH_NAME is the parent node identifier.

GRAPH_PORT specifies the graph's port.

NODE,NAME is the identifier of a previously created node.

PORT is the port number of the node to be connected.

Characteristics of the LINK_GRAPH_OUTPUT_PORT procedure are:

• If the graph structure specified by GRAPH_NAME does not exist then
NON_EXISTING_GRAPH_ERROR is raised.

• If the port specified by GRAPH_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• If the port specified by PORT is already connected to another graph port then
CONNECTIVITY_ERROR is raised.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

5.1.1.5 QET READ NEP - Determines the Value of the READ NEP
The Gh-I_READ_NEP function returns the current value of the READ node execution
parameter. The function definition of GET_READ_NEP is:

function GET READ NEP (NODE NAME: in NODE ID;

PORT_ in _NPUT_PORT_ return READ_--AMOUNT;

The parameters to the GET_R.EAD_NEP function are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

Characteristics of the GET_READ_NEP function are:

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

SOF[eCH 34



• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5,1,1,6 GET OFFSET NEP - Determines the Value of the OFFSET

NEP
The GET_OFFSET_NEP function returns the current value of the OFFSET node execution
parameter. The function definition of GET_OFFSET_NEP is:

function GET OFFSET NEP (NODE_NAME: in NODE_ID;
PORT: in INPUT PORT) return OFFSET AMOUNT;

The parameters to the GET_OFFSET_NEP function are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

Characteristics of the GET OFFSET_NEP function arc:

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.1.7 GET CONSUME NEP - Determines ghe Value of the

CONSUME NEP

The GET_CONSUME_NEP function returns the current value of the CONSUME node

execution parameter. The function definition of GET_CONSUME_NEP is:

function GET CONSUME NEP (NODE_NAME: in NODE ID;

PORT-- in INPUT_PORT) return CONSUME--AMOUNT;

The parameters to the GET_CONSUME_NEP function are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

Characteristics of the GET_CONSUME_NEP function are:

• If the node specified by NODE_NAME does not exist then
NON_EXISTINGNODEERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

SO_'[eCM 35



5,1.1.8 GET THRESHOLD NEP - Del¢rmine_ the Value of the
THRESHOLD NEP

The GET_THRESHOLD NEP function returns the current value of the THRESHOLD

node execution parameter. The function definition of GET_THRESHOLD_NEP is:

function GET THRESHOLD NEP (NODE NAME: in NODE ID;

PORT: in INPUT_PORT) return THRESHOLD_AMOUNT;

The parameters to the GET_THRESHOLD_NEP function are:

NODENAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

Characteristics of the GET_CONSUME_NEP function arc:

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.1.9 GET PRODUCE NEP - Determines the Value of the PRODUCE

NEP
The GET_PRODUCE_NEP function returns the current value of the PRODUCE node

execution parameter. The function definition of GET_PRODUCE_NEP is:

function GET PRODUCE NEP (NODE NAME: in NODE_ID;

PORT_ in OUT--PUT_PORT) _eturn PRODUCE_AMOUNT;

The parameters to the GET PRODUCE_NEP function are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

Characteristics of the GET_PRODUCE_NEP function arc:

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

SO ecH 36



5.1.1.10 NEW READ NEP - Assign a New Value _q [he READ NEP
The NEW_READ_NEP procedure assigns a new value to the READ node execution

pm'an_ter which affects how queue data is processed. The procedure def'mition is:

procedure NEW READ NEP (NODE_NAME: in
PORT--in _NPUT PORT;

NEW VALUE: in READ AMOUNT);

NODE ID;

The parameters to the NEW_READ_NEP procedure are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

NEW_VALUE is the new value to be assigned to the READ NEP.

Characteristics of the NEW_READ_NEP procedure are:

The threshold value is automatically changed to the maximum of (READ +
OFFSET, CONSUME) if the READ, OFFSET, or CONSUME NEPS are
changed and the new value is greater than the current threshold value.

When a NEP value is specified by means of a command statement then the value
is assigned to the node port If the underlying operation is a subgraph, then the
value is inherited by the node port in the subgraph which is linked to the

corresponding graph port.

• If the new NEP values would cause the attached queue, if any, to exceed
capacity, then CAPACITY_ERROR is

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5,1.1.11 NEW OFFSET NEP - A_sign _ New V_alue to the OFFSET

NEg_
The NEW_OFFSET_NEP procedure assigns a new value to the OFFSET node execution
parameter which affects how queue data is processed. The procedure definition is:

procedure NEW_OFFSET_NEP (NODE_NAME: in
PORT: in INPUT PORT;

NEW VALUE: in OFFSET AMOUNT);

NODE ID;

The parameters to the NEW_OFFSET_NEP procedure are:

NODE_NAME is the identifier of the node which owns the NEP.

SOF[eCH 37



PORT is the port number of the node for which the NEP is requested.

NEW_VALUE is the new value to be assigned to the OFFSET NEP.

Characteristics of the NEW_OFFSET_NEP procedure are:

The threshold value is automatically changed to the maximum of (READ +
OFFSET, CONSUME) ff the READ, OFFSET, or CONSUME NEPS are
changed and the new value is greater than the current threshold value.

When a NEP value is specified by means of a command statement then the value

is assigned to the node port. If the underlying operation is a subgraph, then the
value is inherited by the node port in the subgraph which is linked to the
corresponding graph port.

• If the new NEP values would cause the attached queue, if any, to exceed
capacity, then CAPACITY_ERROR is raised.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.1.12 NEW CONSUME NEP - Assign a New Value to the
CONSUME NEP

The NE.W_CONSUME_NEP procedure assigns a new value to the CONSUME node
execuuon parameter which affects how queue data is processed. The procedure definition
is:

procedure NEW CONSUME NEP (NODE NAME: in

PORT: in INPUT_PORT;

NEW_VALUE: in CONSUME_AMOUNT);

NODE ID;

The parameters to the NEW_CONSUME_NEP procedure are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

NEW_VALUE is the new value to be assigned to the CONSUME NEP.

Characteristics of the NEW_CONSUME_NEP procedure are:

The threshold value is automatically changed to the maximum of (READ +
OFFSET, CONSUME) if the READ, OFFSET, or CONSUME NEPS are
changed and the new value is greater than the current threshold value.

When a NEP value is specified by means of a command statement then the value

is assigned to the node port. If the underlying operation is a subgraph, then the

sO ecN 38



valueisinheritedby the node portinthe subgraph which islinkedto the

correspondinggraph port.

Ifthe new NEP valueswould cause theattachedqueue,ifany,toexceed
capacity,thenCAPACITY_ERROR israised.

If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5,1.1.13 NEW THRESHOLD NEP - Assign a New Value to Ih¢

THRF._HQLD NEP
The NEW_THRESHOLD_NEP procedure assigns a new value to the THRESHOLD node
execution parameter which affects how queue data is processed. The procedure definition
is:

procedure NEW_THRESHOLD_NEP (NODE_NAME: in
PORT: in INPUT_PORT;
NEW VALUE: in THRESHOLD AMOUNT);

NODE ID;

The parameters to the NEW_THRESHOLD_NEP procedure are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

NEW_VALUE is the new value to be assigned to the THRESHOLD NEP.

Characteristics of the NEW_THRESHOLD_NEP procedure arc:

When a NEP value is specified by means of a command statement then the value
is assigned to the node port. If the underlying operation is a subgraph, then the
value is inherited by the node port in the subgraph which is linked to the
corresponding graph port.

• The exception THRESHOLD_ERROR is raised if the threshold value is specified
to be less than the maximum of (READ + OFFSET, CONSUME).

• If the new NEP values would cause the attached queue, if any, to exceed
capacity, then CAPACITY_ERROR is raised.

• If the node specified by NODENAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

SOF[eCH 39



5,1,1,14 NEW PRODUCE NEP - Assign a New Value to the

PRODUCE NEP
The NEW_PRODUCE_NEP procedure assigns a new value to the PRODUCE node
execution parameter which affects how queue data is processed. The procedure definition
is:

procedure NEW PRODUCE NEP (NODE__NAME: in
PORT: in OUTPUT PORT;

NEW VALUE: in PRODUCE AMOUNT);

NODE ID;

The parameters to the NEW_PRODUCE_NEP procedure are:

NODE_NAME is the identifier of the node which owns the NEP.

PORT is the port number of the node for which the NEP is requested.

NEW_VALUE is the new value to be assigned to the PRODUCE NEP.

Characteristics of the NEW_PRODUCE NEP procedure are:

When a NEP value is specified by means of a command statement then the value
is assigned to the node port. If the underlying operation is a subgraph, then the
value is inherited by the node port in the subgraph which is linked to the
corresponding graph port.

• If the new NEP values would cause the attached queue, if any, to exceed

capacity, then CAPACITYERROR is raised.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• Ifthe port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.1.15 SET NEPS - Assigns New Values to All Node Execution

Parameters
The SET_NEPS procedure assigns new values to the node execution parameters which
affect how queue data is processed. The procedure definition is:

procedure SET__NEPS (NODE_NAME: NODE_ID;

PORT: INPUT PORT;

NEW READIN: READ AMOUNT;

NEW OFFSET: OFFSET AMOUNT;

NEW CONSUME: CONSUME AMOUNT;

NEW THRESHOLD: THRESHOLD AMOUNT);

The parameters to the SET_NEPS procedure are:

NODE_NAME is the identifier of the node which owns the NEPS

so_[ecs 40



PORT is the port number of the node for which the NEP is requested.

NEW REAl)IN, NEW_OFFSET, NEW_CONSUME, NEW_THRESHOLD are
the new NEP values to be assigned to the node.

Characteristics of the SET_NEPS procedure are:

The threshold value is automatically changed to the maximum of (READ +
OFFSET, CONSUME) if the new value is greater than the current threshold
value.

When a NEP value is specified by means of a command statement then the value
is assigned to the node port. If the underlying operation is a subgraph, then the
value is inherited by the node port in the subgraph which is linked to the
corresponding graph port.

• If the new NEP values would cause the attached queue, if any, to exceed
capacity, then CAPACITY_ERROR is raised.

• If the node specified by NODENAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.1.16 GET PRIORITY - Determines Priority Level of N04¢,
The GET_PRIORH'Y function returns the priority level value. The function definition is:

function GET PRIORITY (NODE NAME: in NODE ID)

return PRIORITY_LEVEL;

The parameter to the GET_PRIORITY function is:

NODE_NAME is the identifier of the node which owns the NEPS.

Characteristics of the GET_PRIORITY function are:

• The values of PRIORITY_LEVEL are implementation defined.

• The value 0 is an undefined, default priority level which may be associated with
nodes which have subgraphs as their underlying operation.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

5.1.1.17 NEW PRIQRITY - Assign_ New Priority Level to Ngde
The NEW_PRIORITY procedure set a new priority level value. The function definition is:

SOF[eCH 41



procedure NEW PRIORITY (NODE_NAME: in NODE_ID;
PRIORITY: in PRIORITY LEVEL);

The parameters to the NEW_PRIORITY procedure are:

NODE_NAME is the identifier of the node which owns the NEPS.

PRIORITY is the new priority level.

Characteristics of the NEW_PRIORITY procedure are:

• The values of PRIORITY_LEVEL are implementation defined.

The number of priority levels is implementation dependent.

The new priority level of a node with subgraphs as the underlying operation is
inherited by all nodes within the subgraph. The inheritance process continues
down the hierarchy until all nodes with underlying primitive operations have been
assigned the new priority.

• The use of this procedure allows nodes within the same graphs system to have
different priority levels.

• This procedure may be used to statically set the priority of a node at instantiation
time or dynamically set the priority of a node at execution time.

• For nodes already scheduled to execute or currendy executing, the binding of the
new priority level will take effect after the node has executed.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

5.1.2 Commands to start and stop graph execution and

query the status of a node.

5.1.2.1 NODE READY - Determines Ready State of Node

The NODEREADY function allows the ready state of a node to be evaluated. The
function definition of NODE_READY is:

function NODE_READY (NODE_NAME: in NODE_ID) return BOOLEAN;

The parameter to the NODE_READY function is:

NODE_NAME is the identifier of the node for which the ready state will be
determined.

Characteristics of the NODE_READY function are:

SOI=[eCl"l 42



NODE_READYdeterminesif the node satisfies the scheduling criteria, not if the

node has been scheduled for execution. A node may be ready, but not scheduled,
if NODE_NAME is the identifier of the currendy executing node or the execution
of the node has not been started or has been stopped.

• NODE_READY re,ua_ a value of TRUE ff the node is ready for execution,

FALSE if the node is not ready for execution.

If this function is invoked with NODE_NAME being the identifier of the currently

executing node and returns the value TRUE, then the execution of the underlying
primitive operation may be repeated without requiring the node to be rescheduled
by the Shell.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

5.1.2.2 START NODE - Start_ the Execution of it Graph System
The START_NODE procedure submits an instantiated graph system to the Shell for
execution. The procedure definition of START_NODE is:

procedure START NODE (PARENT NODE: in NODE ID;

STATUS INDICATOR: out BOOLEAN);

The parameters to the START_NODE pr_..dure are:

PARENT_NODE is the identifier of the graph system.

STATUS_INDICATOR returns whether the procedure was successful.

Characteristics of the START_NODE procedure are:

• PARENT_NODE must have been instantiated.

• If the node specified by PARENT_NODE does not exist then
NON_E_STING_NODE_ERROR is raised.

5.1.2.3 STOP NODE - StOP_ the Execution of a Graph System
The STOP_NODE procedure causes the Shell to stop executing a graph system. The
procedure definition of STOP_NODE is:

procedure STOP NODE (PARENT_NODE: in NODE_ID
STATUS--INDICATOR: out BOOLEAN);

The parameters to the STOP_NODE procedure are:

PARENT_NODE is the identifier of the graph system.

STATUS_INDICATOR returns whether the procedure was successful.

so lecN 43



Characteristics of the STOP_NODE procedure are:

• PARENTNODE must be a valid identifier which represents a currently executing
graph system.

• No queue data shall be lost as a result of this operation.

• Queues connected to the parent node shall remain connected.

• If the node specified by PARENT_NODE does not exist then
NON_EXISTING_NODE_ERROR is raised.

5.1.3 Commands to control the setting and consuming of

triggers

5.1.3.1 PRODUCE TRIGGER - Produces Triggers onto an Attached
Outout Oueue

The PRODUCE_TRIGGER procedure allows triggers to be written to the tail of a queue
attached to an output port. The procedure definition of PRODUCE_TRIGGER is:

procedure PRODUCE TRIGGER (CURRENT NODE:

OUT_PORT: in OUTPUT_PORT;

AMOUNT: in CAPACITY_AMOUNT);

in NODE_ID;

The parameters to the PRODUCE_TRIGGER procedure are:

CURRENT_NODE is the node identifier of the currently executing node.

OUT_PORT is the output port number of the node in which the data is produced.

AMOUNT is the number of triggers to be placed on the tail of the queue connected to
OUT_PORT.

Characteristics of the PRODUCE_TRIGGER procedure are:

• The amount of data to be produced is specified by the PRODUCE NEP associated
with the node's output port.

• If the output port is not connected to a queue, then the data is discarded.

• If the node specified by CURRENT_NODE does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by OUT_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• A CAPACITY_ERROR if the added triggers would cause the queue attached to
OUT_PORT to go over capacity.

SO_-TeC: H 44



5.1,3,2 ENOUEUE TRIGGER - Produces Tritzeers onto an Unattached

Oueue

The ENQUEUE_TRIGGER procedure allows triggers to be written to the tail of a queue.
The queue does not have to be attached to the node. The procedure def'mirion of
ENQUEUE_TRIGGER is:

procedure ENQUEUE_TRIGGER (QUEUE_NAME: in QUEUE ID;
AMOUNT: in CAPACITY AMOUNT);

The parameters to the ENQUEUE_TRIGGER procedure are:

QUEUE_NAME is the identifier of a previously created queue which is to have data
added to its tail.

AMOUNT is the number of data items to be extracted from the buffer variable and

placed onto the queue.

Characteristics of the ENQUEUE_TRIGGER procedure are:

• A CAPACITY_ERROR if the added triggers would cause the queue to go over
capacity.

• Ifthe queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.1.3.3 CONSUME TRIGGER - Consumes Tritz_ers from an Attached

Input Oueue
The CONSUME_TRIGGER procedure allows triggers to be removed from the head of
queue attached to an input port. The procedure definition of CONSUME_TRIGGER is:

procedure CONSUME TRIGGER (CURRENT NODE:

IN PORT: in INPUT PORT;
-- m

AMOUNT: in CAPACITY_AMOUNT);

in NODE ID;

The parameters to the CONSUME_TRIGGER procedure are:

CURRENT_NODE is the node identifier of the currently executing node.

IN_PORT is the input port number of the node in which the data is read.

AMOUNT is the number of triggers to be removed from the head of the queue
connected to IN_PORT.

Characteristics of the CONSUME_TRIGGER procedure are:

• The anaount of data to be consumed is specified by the CONSUME NEP
associated with the node's input port.

SOI=[eCH 45



The consume operation is destructive to the data on the queue.

The input port must have a queue attached or a CONNECTIVITY_ERROR is
raised.

If the node specified by CURRENT_NODE does not exist then
NON_EXISTING_NODE_ERROR is raised.

If the port specified by IN_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.3.4 FLUSH TRIGGER - Removes Trigger_ from _n Unattached
Oueue

The FLUSH_TRIGGER procedure allows triggers to be removed from an unattached
queue. The procedure definition of FLUSH_TRIGGER is:

procedure FLUSH TRIGGER (QUEUE NAME: in QUEUE_ID;

AMOUNT-- in CAPACITY_AMOUNT) ;

The parameters to the FLUSH_TRIGGER procedure are:

QUEUENAME is the identifier of a previously created queue which is to have
triggers removed.

AMOUNT is the number of triggers to be removed from the head of the queue.

Characteristics of the FLUSH_TRIGGER procedure are:

- The predefined amount ALL causes all data to be removed from the queue.

• Should the queue contain less data items than the amount, an
INSUFFICIENT_DATA_ERROR results.

• Ifthe queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.1.3,5 INIT TRIGGER O - Initializes an Unattach¢4 Quet_e with

Vri_rtrat 
The INIT_TRIGGER_Q procedure removes all triggers from a queue and allows triggers
to be written to the tail of a queue. The queue does not have to be attached to a node. The
procedure def'mition of INIT_TRIGGER_Q is:

procedure INIT_TRIGGER__Q (QUEUE NAME: in QUEUE_ID;

AMOUNT : in MAX__QUEUE_SI--ZE) ;

The parameters to the INIT_TRIGGER_Q procedure are:

SO_-_eCH 46



QUEUE_NAMEis theidentifierof apreviously created queue which is to be
initialized.

AMOUNT is the number of data items to be extracted from the buffer variable and

placed onto the queue.

Characteristics of the INIT_TRIGGER_Q procedure axe:

• A CAPACITY_ERROR is raised if the added data would cause the queue to go
over capacity.

• Prior to placing new triggers on the queue, the queue is flushed of all existing
triggers.

• If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.1.4 Commands to create and move data to and from

queues

5.1.4.1 O SIZE - Determines Oueue Size
The Q_SIZE function returns the current size of a queue. The size of a queue refers to the
number of data elements on the queue. The function def'mition of Q_SIZE is:

function Q_SIZE (QUEUE_NAME: in QUEUE_ID) : return INTEGER;

The parameter to the Q_SIZE function is:

QUEUE_NAME is the queue identifier of the queue for which its size is requested.

A characteristic of the Q_SIZE function is:

• If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.1.4.2 CREATE O - Create a Oueue

The CREATE_Q function creates a queue structure. The maximum length of the queue is
specified as well as the type of data elements which may be transported through the queue.
The function definition of CREATE_Q is:

function CREATE_Q (CAPACITY: in CAPACITY_AMOUNT)

return QUEUE_ID;

The parameters to the CREATE_Q function are:

47



CAPACITY is an integer amount of the maximum number of data elements which
the queue can have at any one time.

A characteristics of the CREATE_Q function is:

• The value returned from the CREATE_Q function is the identifier of the queue.

5.1.4.3 CONNECT INPUT O - Connect a Queue to a Node
The CONNECT_INPUT_Q procedure links the head of a queue structure to the input port
of a node. The procedure definition of CONNECT INPUT_Q is:

procedure CONNECT INPUT Q (QUEUE_NAME : in QUEUE ID;
NODE NAME : in NODE ID;

PORT : in INPUT_PORT);

The parameters to the CONNECT_INPUT_Q procedure are:

QUEUE_NAME is the identifier of a previously created queue.

NODE_NAME is the sink node identifier of a previously created node.

PORT is the port number of the node in which the queue head is to be connected.

Characteristics of the CONNECT_INPUT_Q procedure are:

A queue that is connected to a node will be considered in the node scheduling
criteria. If a node is scheduled for execution or is executing at the time a queue is
connected to it, then the node will continue to execute regardless of the amount of
data on the queue.

A queue may be attached to several input ports (for several nodes). Consuming
data from a shared queue by the execution of node may affect the execution
eligibility of other nodes. The Shell must check the execution eligibility of other
nodes receiving input from the shared queue anytime data is consumed from the
queue.

• If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

• If the lXn't specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• If the queue's capacity is insufficient to support the NEPs of the port of
NODE_NAME specified by PORT, then CAPACITYERROR is raised..

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

sol=recH 48



5.1.4.4 CONNECT OUTPUT O - Connect a Oueue t0 _ No0e

The CONNECT OUTPUT Q procedure links the tail of a queue structure to the output
port of a node. The procedure definition of CONNECT_OUTPUT_Q is:

procedure CONNECT_OUTPUT Q (QUEUE_NAME

NODE_NAME : in NODE_ID;

PORT : in OUTPUT PORT);

: in QUEUE_ID;

The parameters to the CONNECT_OLrI'PUT_Q procedure are:

QUEUE_NAME is the identifier of a previously created queue.

NODE_NAME is the source node identifier of a previously created node.

PORT is the port number of the node in which the queue head or tail is to be
connected.

Characteristics of the CONNECT_OUTPUT_Q procedure are:

A queue that is connected to a node will be considered in the node scheduling
criteria. If a node is scheduled for execution or is executing at the time a queue is
connected to it, then the node will continue to execute regardless of the amount of
data on the queue.

Multiple queues may be attached to the same output port. Queues attached to
output ports are distinct, yet they will receive the same data during a
PRODUCE_DATA operations.

• If the queue specifii_l by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

• If the port specified by PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• If the queue's capacity is insufficient to support the NEPs of the port specified by
PORT, then CAPACITY_ERROR is raised.

• If the node specified by NODE_NAME does not exist then
NON_EXISTING_NODE_ERROR is raised.

5.1.4.5 PRODUCE DATA - Pr0du¢¢8 Dam 9nto an Attached Output
Oueue

The PRODUCE_DATA procedure allows data to be written to the tail of a queue attached to
an output port. The procedure definition of PRODUCE_DATA is:

procedure PRODUCE DATA (CURRENT NODE

DATA_ARRAY: in OUTPUT_PORT;
OUT ARRAY: in BUFFER);

in NODE ID;

The parameters to the PRODUCE_DATA procedure are:

SOI_eCH 49



CURRENT_NODEis thenodeidentifierof thecurrentlyexecutingnode.

OUT_PORTistheoutputportnumberof thenodethatis producingthedata.

DATA_ARRAY is thearrayvariableintowhichthedatawill bewrittenbythenode
thatis producingthedata.

Characteristicsof the PRODUCE_DATA procedure are:

- The amount of data to be produced is specified by the PRODUCE NEP associated
with the node's output port.

The data elements to be placed on the queue must be of the same data type used in
the CREATE_Q function. They are added to the queue after all elements already
on the queue. Data taken from the buffer will be placed onto the queue tail,
element by element, starting with the buffer element index 1 being placed onto the
tail Of the queue, and continuing, with increasing buffer array index, until the
specified number of elements has been placed into the queue. The remainder of
the queue will not be disturbed.

• If an output port is not connected to a queue, then the data is discarded.

• An output port, which has multiple queues attached, will result in the same data
being produced onto each queue.

• If the node specified by CURRENT_NODE does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by OUT_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1.4.6 ENOUEUE DATA - Produces Data onto an Unattached
Oueue

The ENQUEUE_DATA procedure allows data to be written to the tail of a queue. The
queue does not have to be attached to the node. The procedure definition of
ENQUEUE_DATA is:

procedure ENQUEUE DATA (QUEUE NAME: in

DATA ARRAY: in BUFFER;

AMOUNT: in CAPACITY_AMOUNT);

QUEUE_ID;

The parameters to the ENQUEUE_DATA procedure are:

QUEUE_NAME is the identifier of a previously created queue which is to have data
added to its tail.

DATA_ARRAY is an initialized array variable which contains the data to be placed
onto the tail of the queue.

SOF[eCH 50



AMOUNT is the number of data items to be extracted from the buffer variable and

placed onto the queue.

Characteristics of the ENQUEUE_DATA procedure are:

The data elements to be placed on the queue must be of the same data type used in
the CREATE_Q function. They are added to the queue after all elements already
on the queue. Data taken from the buffer will be placed onto the queue tail,
element by element, starting with the buffer element index I being placed onto the
tail of the queue, and continuing, with increasing buffer army index, until the
specified number of elements has been placed into the queue, the remainder of
the queue will not be disturbed.

• If the added data would cause the queue to go over capacity then
CAPACITY_ERROR is raised.

• If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.1.4.7 INIT DATA O - Initializes an Unattached Queue with Data

The INIT_DATA_Q procedure allows all data to be removed from a queue and data to be
written to the tail of a queue. The queue does not have to be attached to a node. The
procedure def'mition of INIT_DATA_Q is:

procedure INIT_DATA_Q (QUEUE_NAME: in
VAR BUFFER: in BUFFER;

AMOUNT: in CAPACITY AMOUNT);

QUEUE_ID;

The parameters to the INIT Q procedure are:

QUEUE_NAME is the identifier of a previously created queue which is to be
initialized.

VAR_BUFFER is a properly initialized variable which represents the data to be
placed onto the queue.

AMOUNT is the number of data items to be extracted from the buffer variable and

placed onto the queue.

Characteristics of the INIT_DATA Q procedure are:

The data elements to be placed on the queue must be of the same data type used in
the CREATE_Q function. They are added to the queue after all elements already
on the queue. Data taken from the buffer will be placed onto the queue tail,
element by element, starting with the buffer element index 1 being placed onto the
tail of the queue, and continuing, with the increasing buffer array index, until the
specified number of elements has been placed into the queue. The remainder of
the queue will not be disturbed.

so ecN 51



Prior to placing new data objects on the queue, the queue is flushed of all existing
data.

If the added data would cause the queue to go over capacity then
CAPACI'I__ERROR is raised.

If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.1.4.8 READ DATA - Read Data from an Attached Input Oueue
The READ_DATA procedure causes data to be written from the head of the attached queue
into a variable. The READ_DATA operation may be indexed into the queue by the offset
amount The procedure definition of READ_DATA is:

procedure READ DATA (CURRENT NODE:

IN_PORT: in INPUT_PORT;

VAR BUFFER: out BUFFER);

in NODE_ID;

The parameters to the READ_DATA procedure are:

CURRENT_NODE is the node identifier of the currendy executing node.

IN_PORT is the input port number of the node in which the data is read.

VAR_BUFFER is the variable in which the read data will be stored.

Characteristics of the READF_DATA procedure are:

• The buffer variable must be large enough to store the data being read.

The amount of data to be read is specified by the READ NEP associated with the
nod's input port. The starting position of the read is indexed by the offset amount

which is specified by the OFFSET NEP associated with the node's input port.

• The read operation is non-destructive to the data on the queue.

• The input port must have a queue attached or the exception
CONNECTIVITY_ERROR will be raised.

• If the node specified by CURRENT_NODE does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by IN_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

sol=ret::H 52



_,1.4.9 MOVE Db, TA - Move Data from an Input Oueue to an

Output Queue
The MOVE_DATA procedure allows data to be moved directly from an input queue to an
output queue of the currently executing node. The procedure definition of MOVE_DATA
is:

procedure MOVE DATA (CURRENT_NODE: in
IN PORT: in INPUT PORT;

OUT PORT: in OUPUT PORT;

AMOUNT: in CAPACITY AMOUNT);

NODE ID;

The parameters to MOVE_DATA are:

CURRENT_NODE is the identifier of the currently executing node which has the
input and output queues attached to it.

IN_PORT is the port number associated with the input queue.

OUT_PORT is the port number associated with the output queue.

AMOUNT is the number of data items to be moved from the input queue to the
output queue.

Characteristics of the MOVE_DATA procedure are:

• The amount of data is removed from the input queue and added to the output
queue.

• The order of the data is unchanged.

CAPACITY_ERROR is raised if the current size of the input queue is less than
the amount or if the current size of the output queue plus the amount would cause
the queue to exceed capacity.

• If the node specified by CURRENT_NODE does not exist then
NON_EXISTING_NODE_ERROR is raised.

• If the port specified by IN_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

• If the port specified by OUT_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5,1,4,10 CONSUME DATA - Consum¢_ Data from an Attached

Input Queue

The CONSUME_DATA procedure allows data to be removed from the head of queue
attached to an input port The procedure definition of CONSUMEDATA is:

procedure CONSUME DATA (CURRENT NODE:
IN PORT: qn INPUT PORT);

SOVTeCH 53

in NODE ID;



The parameters to the CONSUME_DATA procedure are:

CURRENT_NODE is the node identifier of the currently executing node.

INPORT is the input port number of the node in which the data is read.

Characteristics of the CONSUME_DATA procedure are:

• The amount of data to be consumed is specified by the CONSUME NEP
associated with the node's input port.

• The consume operation is destructive to the data on the queue.

• The input port must have a queue attached or CONNECTIVITY_ERROR will be
raised.

• If the node specif'led by CURRENT_NODE does not exist then
NON_EXISTING_NODEERROR is raised.

• If the port specified by IN_PORT does not exist then
NON_EXISTING_PORT_ERROR is raised.

5.1,4,11 DEOUEUE DATA - Reads Data from an Unattached Qqeue
The DEQUEUE_DATA procedure allows data to be read with an offset from an unattached
queue. The procedure definition of DEQUEUE is:

procedure DEQUEUE_DATA (QUEUE_NAME:
VAR BUFFER: out BUFFER;

AMOUNT : in CAPACITY_AMOUNT;
OFFSET: in OFFSET AMOUNT);

in QUEUE_ID;

The pamn_ters to the DEQUEUE_DATA procedure are:

QUEUE_NAME is the identifier of a previously created queue which is to have data
added to its tail.

VAR_BUFFER is the variable in which the data to be stored.

AMOUNT is the number of data items to be read from the queue's head.

OFFSET is the index amount into the queue's head.

Characteristics of the DEQUEUE_DATA procedure are:

• INSUFFICIENT_DATA_ERROR is raised if the amount + offset is greater than
the current queue size.

• If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

SOFl'er. H 54



_.1,4.12 FLUSH DATA - Removes Dat_ frgm an Unattached Oueue

The FLUSH_DATA procedure allows data to be removed from an unattached queue. The
procedure definition of FLUSH_DATA is:

procedure FLUSH DATA (QUEUE NAME: in QUEUE_ID;
AMOUNT: in CAPACITY AMOUNT);

The parameters to the FLUSH_DATA procedure are:

QUEUE_NAME is the identifier of a previously created queue which is to have data
removed.

AMOUNT is the number of data items to be removed from the queue's head.

Characteristics of the FLUSH_DATA procedure are:

• The predefined amount ALL causes all data to be removed from the queue.

• Should the queue contain less data items than the amount,
INSUFFICIENT_DATA_ERROR will be raised.

• If the queue specified by QUEUE_NAME does not exist then
NON_EXISTING_QUEUE_ERROR is raised.

5.2 ESL Command Specification

package ESL COMMANDS is

type QUEUE ID is private;

MAX_QUEUE_SIZE: constant INTEGER := implementation

STATUS INDICATOR: BOOLEAN;

defined;

type NODE ID is private;

type PRIORITY LEVEL is private;

type NEP is private;

type READ AMOUNT is range 1 .. MAX QUEUE SIZE;

type OFFSET AMOUNT is range I .. MAX QUEUE SIZE;

SOFIeCH 55



type CONSUME_AMOUNT is range

type CAPACITY_AMOUNT is range

type THRESHOLD_AMOUNT is range

type PRODUCE AMOUNT is range

1 .. MAX_QUEUE_SIZE;

1 .. MAX__QUEUE_SIZE;

1 .. MAX_QUEUE_SIZE;

1 .. MAX_QUEUE_SIZE;

type PORT ID is private;

subtype INPUT_PORT is PORT_ID;

subtype OUTPUT_PORT is PORT_ID;

type GRAPH_PORT_ID is private;

subtype INPUT_GRAPH_PORT is GRAPH_PORT_ID;

subtype OUTPUT_GRAPH_PORT is GRAPH_PORT_ID;

QUEUE and DATA FLOW COMMANDS

function Q_SIZE (QUEUE_NAME: in QUEUE_ID) : return INTEGER;

generic

type QDATA is private;

package QUEUE COMMANDS is

type BUFFER is array(l .. MAX_QUEUE_SIZE) of QDATA;

function CREATE_Q (CAPACITY: in CAPACITY_AMOUNT)

return QUEUE_ID;

procedure CONNECT_INPUT_Q (QUEUE_NAME : in QUEUE_ID;

NODE NAME : in NODE ID;

PORT : in INPUT PORT);

procedure CONNECT__OUTPUT_Q (QUEUE_NAME : in QUEUE_ID;
NODE NAME : in NODE ID;

PORT : in OUTPUT PORT);

SOI=[eCH 56



procedure PRODUCE DATA (CURRENT_NODE in NODE_ID;

OUT PORT: in PORT ID;

BUFFER: in QDATA) ;

procedure ENQUEUE_DATA (QUEUE_NAME: in QUEUE_ID;

BUFFER: in QDATA;

AMOUNT: in INTEGER);

procedure INIT_DATA_Q (QUEUE_NAME: in QUEUE_ID;

VAR BUFFER: in BUFFER;

AMOUNT: in CAPACITY AMOUNT);

procedure READ DATA (CURRENT__NODE: in NODE_ID;
IN PORT: in PORT ID;

VAR BUFFER: out BUFFER);

procedure MOVE_DATA (CURRENT__NODE: in NODE_ID;

IN PORT: in PORT ID;

OUT PORT: in PORT ID;

AMOUNT: in CAPACITY AMOUNT);

procedure CONSUME DATA (CURRENT_NODE: in NODE_ID;

IN PORT: in PORT ID);

procedure DEQUEUE_DATA (QUEUE_NAME: in QUEUE_ID;
VAR BUFFER: out BUFFER;

AMOUNT: in CAPACITY AMOUNT;

OFFSET: in. OFFSET AMOUNT);

procedure FLUSH DATA (QUEUE_NAME: in QUEUE_ID;
AMOUNT: in CAPACITY AMOUNT);

end QUEUE_COMMANDS;

TRIGGER COMMANDS

procedure PRODUCE TRIGGER (CURRENT_NODE: in NODE_ID;
OUT PORT: in OUTPUT PORT;

AMOUNT: in CAPACITY AMOUNT);

procedure ENQUEUE_TRIGGER (QUEUE_NAME: in QUEUE_ID;

AMOUNT: in INTEGER);

procedure CONSUME TRIGGER (CURRENT_NODE: in NODE_ID;
IN PORT: in INPUT PORT;

AMOUNT: in CAPACITY AMOUNT);

SO_-[eCH 57



procedure FLUSH TRIGGER (QUEUE NAME: in QUEUE ID;

AMOUNT : in CAPACITY_AMOUNT) ;

procedure INIT TRIGGER Q (QUEUE NAME: in QUEUE ID;

AMOUNT : in CAPACITY_AMOUNT) ;

NODES COMMANDS

function CREATE GRAPH (PARENT NODE: in NODE ID)

return NODE_ID;

function CREATE_NODE (PARENT_NODE: in NODE_ID;

OPERATION_NAME : in STRING) return NODE ID;

procedure LINK_PRIMITIVE (NODE_NAME : in NODE_ID;
PRIMITIVE OPERATION : in STRING);

procedure LINK GRAPH PORT (GRAPH NAME : in NODE ID;

GRAPH PORT: qn GRAPH PORT ID;

NODE_NAME: in NODE_ID;

PORT: in PORT_ID);

function GET READ NEP (NODE_NAME: in NODE_ID;

PORT_ in PORT_ID;) return READ_AMOUNT;

function GET OFFSET NEP (NODE__NAME: in NODE_ID;

PORT_ in PORT_ID;) return OFFSET_AMOUNT;

function GET CC_,:SUME NEP (NODE NAME: in NODE ID;

PORT: in PORT_ID;) return CONSUME_AMOUNT;

function GET THRESHOLD NEP (NODE NAME: in NODE ID;

PORT_ in PORT_D;) return THRESHOLD_AMOUNT;

function GET PRODUCE NEP (NODE NAME: in NODE ID;

PORT_ in OUTPUT PORT) _eturn PRODUCE--AMOUNT;

procedure NEW READ NEP (NODE NAME: in NODE ID;

PORT: in PORT_ID;

NEW_VALUE: in READ_AMOUNT);

procedure NEW OFFSET NEP (NODE NAME: in NODE ID;

PORT: in PORT_ID;
NEW VALUE: in OFFSET AMOUNT);

s° ecs 58



procedure NEW CONSUME_NEP (NODE_NAME: in NODE ID;

PORT: in PORT ID;

NEW VALUE: in CONSUME AMOUNT);

procedure NEW THRESHOLD NEP (NODE_NAME: in NODE_ID;

PORT: in PORT_ID;
NEW VALUE: in THRESHOLD AMOUNT);

procedure NEW PRODUCE NEP (NODE_NAME: in NODE_ID;
PORT: in OUTPUT PORT;

NEW VALUE: in PRODUCE AMOUNT);

procedure SET NEPS (NODE_NAME: NODE_ID;
PORT: PORT ID;

NEW READ IN: READ AMOUNT;
n

NEW OFFSET: OFFSET AMOUNT;

NEW CONSUME: CONSUME AMOUNT;

NEW THRESHOLD: THRESHOLD AMOUNT);

function GET PRIORITY (NODE NAME: in NODE ID)

return PRIORITY_LEVEL;

procedure NEW PRIORITY (NODE NAME: in NODE_ID;

PRIORITY: in PRIORITY LEVEL);

-- EXECUTION COMMANDS --

function NODE_READY (NODE_NAME: in NODE_ID) return BOOLEAN;

procedure START_NODE (PARENT_NODE: in NODE_ID;
STATUS INDICATOR: out BOOLEAN);

procedure STOP NODE (PARENT_NODE: in NODE_ID
STATUS INDICATOR: out BOOLEAN);

EXCEPTION LIST

PRE EXISTING GRAPH ERROR: exception;

NON EXISTING NODE ERROR: exception;

NON EXISTING GRAPH ERROR: exception;

SOF[eCH 59



NON EXISTING PORT ERROR: exception;

NON_EXISTING_QUEUE_ERROR: exception;

CONNECTIVITY_ERROR: exception;

CAPACITY ERROR: exception;

THRESHOLD ERROR: exception;

INSUFFICIENT DATA ERROR: exception;

private

-- implementation defined

end ESL COMMANDS;

SO_-[eCH 60



6.0 Recommendations for Further Research & Development

This section presents alternatives and directions for further investigation. Some of these
suggestions are intended to answer the questions necessary to construct an operational ESL
system. Other suggestions address directions for further research efforts.

It cannot be too strongly stated that the primary goal of all ensuing efforts be directed
toward the construction of an operational prototype of the ESL system and the development
of a realistic application. The prototype application should be developed using existing
application models/algorithms that have been redesigned to take advantage of the ESL's
structured concepts. It is felt that these measures are necessary to gain support for ESL in
the Mission Operations Directorate (MOD) user community.

A study of commercial products that may satisfy the ESL requirements should be made. In
the area of control systems analysis and simulation, several products are available 3. While
the commercial products may not satisfy all requirements, the potential for cost savings are

significant. The user can augment the functions of many tools, for example, adding new
primitives and library elements for code generation. Possible advantages of this approach
are: 1) reduced cost ; 2) faster deployment of useful systems for operations; 3) larger
installed base of users; and 4) user groups. The commercial product study should assess
the feasibilty of the various development approaches and their ability to satisfy the
requirements of the ESL with respect to cost, reliability, maintainability, and product
support.

6.1 Domain Analyses

• What are the application areas that interest MOD the most? Do these application areas
indicate a short term need for ESL? Or would the need be a long term one?

• What is the proper granularity size for ESL primitive development? This investigation
would need to address both the intended uses by the anticipated user(s) as well as the need
assessment raised by the preceding question.

• Is MOD the only customer? A simulation processer such as ESL could be used to verify
expert systems and neural networks as replacement for algorithmic procedures.

6.2 Environment and Capability Specification

• Is simulation at the workstation during an editing session desired? If so, the Shell
executive would need to be designed to be callable from the ESL Editor and to dynamically
allocate the necessary graph storage and map the addresses of data to the primitives that
need that data.

• Is dynamic graph manipulation desired? If it is intended that graph connections and
instances be modified during execution, the set of command statements must be extended to

3for example, Matrix/X, among others.

soFreC:H 61



allow thereal-tirnedisconnectof portsto queuesandthelinking of previously compiled
procedures to newly created nodes.

• Are extensive graph debugging capabilities desired? The capability to capture run-drne
information such as remaining queue capacities and overflows, perform single stepping and
other debugger functionality, would need to be designed into the executive.

6.3 The Translator

The u'anslation process discussed in Section 2.0 is a brief description of a
design/implementation dependent process that must be specified before moving into those
phases. To be able to specify the translation process several decisions about the
implementation must first be made. A few of these design alternatives are listed below:

• What is the language of implementation? The features of the chosen language will .greatly
influence the ultimate design. If the language is C for instance, then the Shell execuuve

will likely use procedure passing (as a parameter) to pass in the file names of primitives. If
the language is Ada, what will be the language construct used to represent primitives:
procedures or tasking?

• What tools will be available for use and what are their capabilties? If the Bauhaus text
manipulation tool is used (and is capable), then templates written in the desired language
could be used and the names of different graph objects would be substituted in. For
instance, a template of source code that checks unspecified queues and calls unspecified
procedures could be used as part of the executive. The translation process would substitute
the names of the queues and primitives indicated in the graph schema, into the templates.
Note that this method would allow the building of the graph implementation simultaneously

with the graph schema, another design decision.

SCIF[e(::H 62



A DDendix A - Scenarios

Contained in this appendix are scenarios that were used to develop requirements for the
ESL Editor and its integration with the Inference Bauhaus system. The intent by including
these scenarios in this report, is to provide some insight to the reader as to how some of the
basic operations using the ESL Editor, were intended to be performed. This is not meant to
be a limitation on the future designers or implemcntors, but rather an informal dialog on the
concepts in the writers/reviewers minds at this time. There were four scenarios used for
initial conceptualization.

A.1 Access the knowledge base from the ESL Editor.

While in the Editor, the user chooses the Tool Panel menu selection to display the Bauhaus
windows. The user then chooses to look at Application (Top) Level graphs, Subgraphs, or
Primitives. The selection of one of these will cause the appropriate subclasses/instances to
appear in the other window. The semantics of the operation of the windows is exactly the
same as that of the Bauhaus. When the user wishes a file to be displayed, they choose
Open from the File menu while the appropriate file is selected or use other means provided
by the Bauhaus enviroment to open applications. This causes the selected graph to be
displayed in the Editor window.

A.2 Editing Graphs

A.2.1 Modifying an existing application by loading a

subgraph or primitive.

The user selects an application graph from the opening tool panel screen and starts the ESL
editor (the exact method of starting the ESL Editor is undefined since it lies outside of the
ESL definition). The top level graph appears in the ESL window. The user descends
through the graph structure until they come to a node that they wish to modify and then
select that node. If the node had been previously attached and the user wished to another
subgraph (or primitive) he must first unattach that node by choosing Unattach from the File
menu. To attach that node to a subgraph or primitive the user first chooses Tool Panel
from the Level menu. This causes the tool panel windows to appear over the ESL
window. The user chooses Subgraphs (or Primitives) on the top Tool Panel window and
proceeds down through the subgraptVprimitive hierarchy until finding the appropriate
subgraph/primitive. To examine the selected subgraph the user Opens it. When the user is
sure that he has the appropriate subgraph/primitive, he selects Attach from the File menu
and the subgraph/primitive is loaded and the Tool Panel window is closed.

A.2.2 Saving a subgraph

Regardless of which of the following methods is chosen, the Bauhaus schema associated
with the graph would be appropriately modified with the changes that were made to the

graph. Multiple applications may use a baselined graph or subgraph. However, a graph or
subgraph that is baselined may not be modified and saved under the same name; it must be

saved to a nonbaselined file. If a subgraph was edited under the context of a particular
application, and this subgraph is referenced by other applications, then a separate schema

SOF]'eCH 63



for thissubgraph would be mated and the new changes would only be reflected on the
newly created schema. This would insure that no other application was affected by the
changes made to the subgraph. If a change to a subgraph is needed and it is desired for this
change to be reflected on all referencing applications, then the baselined graph must be
modified by an engineer with the proper access.

A.2.2.1 Using the Save As command
With the graph to be saved displayed on the screen, the user chooses the Save As menu
command. Choosing this command causes the changes that were made to an application at
any level, to be saved. A Save As dialog box will appear, asking for the name to save the
application under.. A graph that is baselined may not be modified and saved under the
same name. Instead it must be saved under a new name in the user's local directory.

If the window is saved as a main graph or subgraph, the Bauhaus schema is appropriately

modified. If this new graph is derived from an old one, a new Bauhaus schema is also
created. This new schema may reference all appropriate subgraphs and associated data,
differing only from the original in those aspects of the graph that have been modified.

A,2,2,2 Using the Save command
With the graph to he saved displayed on the screen, the user chooses the Save menu
command. Choosing this command causes the changes that were made to an application, at
any level, to be saved. If the original application was configuration controlled, then
:hoosing this command will be treated as if the Save As command were chosen and the
c.dve As dialog window will appear, asking for the name to save the application under.

A.2.3 Matching subgraphs/primitives

All issues about matching have not been resolved.

The Match command would work on attribute/attribute value pairs. One thought on the

_ubject would allow the items to be matched on to he selectable. In that case Match should
have its own menu command with a pop up window. Can the Bauhaus search mechanism
handle this?

A.3 Providing data values.

A.3.1 Using primitives to get data

The options discussed in this section will work if the graph has one input primitive that
reads in aU data and distributes it to all other primitives or if each primitive will read in its
own data.

A,3,1,1 Pred¢fined file names hard ¢0ded into _he primitive,
In this case the name of a file is hardcoded into an initialization primitive (here a primitive is
assumed, however, a subgraph for reading in the data could just as easily be used). This
name is the f'de name of the input data file or a file of pointers to the input data. The user
muds make sure that the initialization primitive is attached to a node in the application graph

and that the node output ports are connected to the proper queues for that application.

SOFI'eC:H



When the application was started, the primitive would read the input data out of the file and

place all the data upon the queues and then trigger the next node to be executed.

A.3.1,2 The file name is passed to the primitive,
This option would necessitate another primitive reading in the name of the input data file
and passing it to the initialization node. The rde name may be provided as a user query
made by a query node. This query node could be a generic node instantiated many times to
ask for different inputs.

A.3.2 Using the Initialize Queue menu option

This option allows the user to select a queue on the graph and deposit an initial value(s) into
that queue. This would be accomplished by the selection of the Initialize Queue menu
command while the desired queue was selected. Choosing this command would cause a
dialog box to appear, allowing the user to enter data onto the queue. It is the responsibility
of the user to ensure that all data is specified to the (scalar) component level and meets all
consu'aints of the type corresponding to this queue. Applications with queues initialized
this way will always have the same specified values upon graph initiation until changed by
the user. If the graph containing the queue is reused in another application, the queue is
still initialized in the same way.

A.4 Reading a user Input form using a primitive

This option would use a primitive to read a form generated for user inputs. The issues and
merits for using this approach are the same as the Using primitives to get data option
discussed above. This primitive would be specially designed to read user input forms.
Taking this approach would put the actual form generation process outside of the ESL
Editor The primitive would have read the form. The issue of the identification of the file
where the form resides is the same as for any input file.

SOt_eC:H 65




